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1. Introduction

Let O = C{x} be the space of germs of holomorphic functions at the origin, and K =
O[x−1] its field of fractions. We will denote by Ô and K̂ their respective completions.

Let E be a finite dimensional vector space over K and ∂ a connection on E, i.e. a

C-linear map ∂ : E → E satisfying ∂(φe) =
dφ
dx

e + φ∂e for φ ∈ K, e ∈ E. Recall that ∂ is

said to be ‘‘regular’’ if there exists a basis (e
1
, · · · , en) of E over K in which the matrix

M of the connection (defined by ∂ei =
∑

mi jei) has a simple pole. Otherwise, ∂ is said

to be ‘‘irregular’’.

The classification in the regular case is assumed to be known. I propose here

to explain the irregular case. The principle of this classification goes back to the

fundamental paper of Birkhoff [Bir13], too long ignored except by a small number of

specialists. In fact, Birkhoff treats the case where, in a suitable basis, the most polar

part of M has distinct eigenvalues; on this case, see also [BJL79]. In the general case,

a detailed study can be found in Jurkat [Jur78]. I will give here a version of the

classification due to Deligne [Del], which relies on previous remarks from [Sib77] and

[Mal79]. In all these methods, an essential ingredient is a theorem on holomorphic

invertible matrix functions by Sibuya [Sib90], a variant of which is already essentially

found in [Bir13].

I have to apologize for having delayed so long in writing an exposition

on these questions, and also for the impossibility in which I find myself of

giving the totality of the bibliographical references on this subject, references

which should begin at least at Poincaré, or even Laplace.

2. Formal Classification

If L is a finite extension of K, there exists t ∈ L and p a positive integer such that

tp = x, and L = C{t}[t−1] = K[t]. The given connection ∂ on E extends in a unique way

to E ⊗ L = F by (t∂t)(tk ⊗ e) = k(tk ⊗ e) +
1

p
(tk ⊗ (x∂x)e). If α ∈ L ⊗ dt, we will denote by

Fα the L-vector space of rank 1 endowed with the connection defined by ∂t f =
α

dt
f . It

1



B. Malgrange

is classical that Fα is isomorphic to Fβ if and only if α − β has a simple pole, with the

coefficient of t−1 being an integer.

The following theorem is classical (Fabry, Hukuhara, Turrittin; I don’t know where

the first complete proof can be found; one can find it in [Was87] and more recent ones

in [Lev75], [Mal72], and [Rob80]).

2.1 Theorem. Let (E, ∂) be a vector bundle with connection over K. After possibly a

ramification tp = x, one can find a formal isomorphism

E ⊗K̂ L̂ �
⊕
α

(Fα ⊗L̂ Gα),

where the Fα have the meaning given above (with L replaced by L̂), and where the Gα

are regular.

By decomposing the Gα according to their indecomposable factors, one then obtains

the indecomposable factors of E ⊗ L. This decomposition is unique in the sense of the

Krull-Schmidt theorem.

3. Asymptotic Expansions

Let (E, ∂) and (E′, ∂) be two vector bundles with connection over K, and let α̂ : (Ê′, ∂)
∼
−→

(Ê′, ∂) be an isomorphism of their completions. If E, and therefore E′, is regular, we

know that α̂ comes from an isomorphism α : (E′, ∂)→ (E, ∂). This is no longer true in

general if E is not regular; more precisely, one can see that there exist α̂ that do not

descend if and only if (EndK(E), ∂) is irregular.

To obtain an analytic classification, one must therefore introduce other invariants,

called ‘‘analytic invariants’’; a first version of these invariants ([S], [Mal79]) involves

sectorial asymptotic expansions, which are defined as follows:

We work in a neighborhood of 0 ∈ C; we perform a real blowup of 0, i.e. we pass

to polar coordinates (ρ, θ) ∈ R+ ×T ; we denote by S the inverse image {0} × T of 0, and

we construct a sheaf A on S as follows:

Let U be an open subset of S , and Ũ the associated angular sector of C, i.e.

{(ρ, θ)|ρ > 0, θ ∈ U}; let A(U) be the set of germs at 0 of holomorphic functions f in

Ũ, admitting at 0 a Laurent asymptotic expansion (I am taking here a slightly different

notation from that of [Mal79]); more precisely, we require that there exists a formal

series

∑
n≤n0

anxn ∈ K̂ such that, for all p ∈ Z, and x close to 0,

∣∣∣∣∣∣∣ f (x) −
∑
n≤p

anxn

∣∣∣∣∣∣∣ ≤ Cp

∣∣∣xp+1
∣∣∣ , Cp > 0.

A classical theorem of Ritt ensures that, if U , S , the ‘‘Laurent series’’ map A(U)→ L
is surjective (see e.g. [Was87]); in what follows, we will denote this map by T : f 7→ f̃ .

3.1 Definition. We denote by A the sheaf associated to the presheaf U 7→ A(U).

With this in place, the first result on which we will rely is the following fundamental

theorem.
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3.2 Theorem (Hukuhara-Turrittin). Let (E, ∂) be a vector bundle with connection over K.

Then, for all θ ∈ S , the map T : ker(∂,Aθ ⊗K E)→ ker(∂, Ê) is surjective.

A proof of this theorem can be found in [Was87]
1
.

Note that the usual statements are apparently stronger, since one proves the previous

result in any sector of opening < π, π being the Katz invariant of (E, ∂). In fact, it is

known that cohomological arguments combined with the formal theory explained in §2

suffice to recover this result from (3.2). We will see arguments of this type in §5.

Let us now fix an (E, ∂). We will use the previous result to study the vector bundles

with connection (E′, ∂) endowed with an isomorphism of the completions α̂ : (Ê′, ∂)
∼
−→

(Ê, ∂) (we follow here the reasoning of [Mal79]); for this, we apply the previous theorem

to α̂ considered as a horizontal section of homK̂(Ê′, Ê) = homK(E′, E)∧; there thus exists

a covering {Ui} of S such that, in Ui, α̂ is represented by αi, a horizontal section over

U of homA(A ⊗K E′,A ⊗K E); since α̂i = α̂ is invertible, we easily deduce that αi

exists. Then, for all (i, j), αiα
−1
j = βi j is an invertible horizontal section over Ui ∩ U j of

EndA(A⊗K E) = A⊗K EndK(E); moreover, as α̂i = α̂ j, we have β̂i j = Id.

We then denote by Λ(E) the sheaf of invertible sections of A⊗K EndK(E); by taking

a basis e
1
, · · · , en of E, Λ(E) identifies with the sheaf Gℓ(n,A) of invertible matrices

with coefficients in A. Let Λ
0
(E) be the subsheaf of elements of Λ(E) asymptotic to

the identity, and Λ
0
(E, ∂) the subsheaf of horizontal sections for ∂ of Λ

0
(E). What

precedes gives a cocycle {βi j} of Λ
0
(E, ∂) for the covering {Ui}, from which we obtain

by passing to the quotient a cohomology class γ(α̂) ∈ H1(S ,Λ
0
(E, ∂)); one easily verifies

that γ(α̂) depends only on α̂, and not on the chosen covering and liftings αi.

Let us say on the other hand that (E′, ∂, α̂) and (E′′, ∂, α̂′) are equivalent if the

isomorphism α̂′−1α̂ : (Ê′, ∂) → (Ê′′, ∂) comes from an isomorphism (necessarily unique)

(E′, ∂)→ (E′′, ∂). We then have the following result:

3.3 Lemma. (E′, ∂, α̂) and (E′′, ∂, α̂′) are equivalent if and only if γ(α̂) = γ(α̂′).

Proof. Suppose we have γ(α̂) = γ(α̂′). By refining the coverings if necessary, we may

assume that the α̂ and α̂′ are defined on the same covering {Ui} and that there exist βi ∈

Γ(Ui,Λ0
(E, ∂)) such that on Ui∩U j, α̂

′
iα̂
′−1
j = βiαiα

−1
j β
−1
j ; we then have α′−1j β jα j = α

′−1
i βiαi;

these functions glue together into a global section on S of A⊗ homK(E′, E′′), a section

which will necessarily be meromorphic, so will belong to homK(E′, E′′); moreover, δ will

obviously be invertible, and will satisfy δ = α̂′−1α̂ on passing to asymptotic expansions;

hence (E′, ∂, α̂) and (E′′, ∂, α̂′) are equivalent. The converse is proved similarly. □

Finally, let Cℓ(E, ∂) denote the set of (E′, ∂′, α̂) up to equivalence; what precedes

gives an injective map γ : Cℓ(E, ∂)→ H1(S ,Λ
0
(E, ∂))

3.4 Theorem. The map γ : Cℓ(E, ∂)→ H1(S ,Λ
0
(E, ∂)) is bĳective.

It remains to prove surjectivity. It follows from the following theorem.

3.5 Theorem. The map H1(S ,Λ
0
(E))→ H1(S ,Λ(E)) has image zero.

This result is due to Sibuya [Sib90]; a proof will be given in the appendix.

Let us show how this result implies (3.4). Let β ∈ H1(S ,Λ
0
(E, ∂)); for a suitable

covering {Ui} of S , β is represented by βi j ∈ Γ(Ui ∩ U j,Λ0
(E, ∂)); according to (3.5) we

1
I should note on this subject that I do not know if the results that I imprudently announced without

proof at the end of [Mal72] and [Mal79] are true in full generality.
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can write βi j = αiα
−1
j , with αi ∈ Γ(Ui,Λ(E)). Then endow A⊗K E|Ui with the connection

α−1i ∂αi =
def

∂′; on Ui ∩ U j, we have ∂′ = ∂ since βi j = α
−1
i α j is horizontal; hence these

connections glue together to give a connection ∂′ on E′. Moreover, we have α̂i = α̂ j, so

the α̂i define an isomorphism α̂ : Ê → Ê; it is then clear by construction that α̂ is an

isomorphism (Ê, ∂′)→ (Ê, ∂), and that we have γ(α̂) = β; whence the theorem.

4. Stokes Structures

We will now translate the results of the previous paragraph in terms of asymptotic

expansions of the sectorial solutions of the equations considered; I follow here Deligne

[Del].

Let (E, ∂) be a vector bundle with connection over K. Let V be the locally constant

sheaf on S of sectorial horizontal sections of E, defined as follows: for θ ∈ S , Vθ is the

space of horizontal sections of (E, ∂) over a small sector {0 < |x| < ε} ∩ {| arg x − θ| < ε}.
Apply Theorem (2.1): after possibly a ramification tp = x, we can find a formal

isomorphism λ̂ : Ê⊗K L→ Ê
1
where Ê

1
is of the form

⊕
α∈A

(Fα⊗LGα); by applying Theorem

(3.2) to homL(E ⊗K L, E
1
), we obtain a sectorial isomorphism uθ in a neighborhood of

θ : E ⊗K L → E
1
, given by an invertible element of Aθ ⊗L hom(E ⊗K L, E

1
), which will

therefore transform Vθ into V
1,θ (V

1,θ being the local system of horizontal sections of E
1
).

Moreover, V
1,θ is immediately explicit: the sections of E

1
are of the form

∑
α∈A

e−
∫
α fα,

where fα is a solution of an equation with regular singularities; by uθ, we deduce the

asymptotic behavior of the horizontal sections of (E, ∂) in a sector near θ; in particular,

we can put a partial order on Vθ according to which exponentials intervene in the said

asymptotic behavior. This leads to the following construction.

Let I be the following local system on S : over a sector we take the forms

+∞∑
−n

akxk/pdx

(p any positive integer), modulo poles of order ≤ 1.

On I, we define the following partial order: for θ ∈ S , we have α <θ β if e−
∫

(α−β)
is

slowly growing (i.e. O(|x|−N) for some N > 0) in a small sector around θ. Note that, for

given α and β, α , β, there exists a finite number of points θ of S (or more exactly, of

a finite covering of S ) such that α and β are incomparable in the neighborhood of θ;
in this case, for θ′ near θ on one side, we will have α <θ′ β; on the other side, we will

have β <θ′ α (we write < for ≤ and ,). The corresponding half-lines are traditionally

called the "Stokes lines" relative to (α, β).

4.1 Definition. Let V be a local system (= a sheaf locally isomorphic to Cn
) on S .

A Stokes structure, or I-filtration of V is a family of subsheaves Vα, indexed by I,
satisfying the following property:

For all θ ∈ S , there exists a decomposition Vθ =
⊕

Vα,θ such that for all θ′ near θ

Vαθ′ =
⊕
β≤θ′α

Vβ,θ.

(Beware that the Vα are not subsheaves in the usual sense, since they are indexed

by a local system and not a set).
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We define Gr V by (Gr V)αθ =
⊕

Vαθ

/ ∑
β<θα

Vβθ ; the property (4.1) ensures that the

(Gr V)α form a family of local systems indexed by I(same warning as above).

With this in place, let (E, ∂) be a vector bundle with connection over K, and V
the local system of its solutions; the construction at the beginning of this paragraph

provides a Stokes structure on V , which we can further restrict to indexing by the α
that intervene in the decomposition of E

1
, the others playing no role.

What precedes gives a functor

Φ : (vector bundles with connection over K)→ (I-filtered local systems),

the map on ‘‘Hom’’ being evident. The result is then the following.

4.2 Theorem. Φ is an equivalence of categories.

Proof. A) Let us first show that Φ is fully faithful. For this, consider two vector

bundles with connection (E, ∂) and (E
1
, ∂), and let F = homK(E, E

1
), endowed

with ∂; set V = Φ(E, ∂), V
1
= Φ(E

1
, ∂), W = Φ(F, ∂); one immediately verifies

that, if we denote by V̄ the local system V where we have forgotten the filtration,

we have W̄ = hom(V̄ , V̄
1
), and that moreover W is endowed with the filtration

defined by the fact that Wα
maps Vβ into Vα+β

1
for all β. In particular, hom(V,V

1
)

identifies with the sections of W0
, i.e. the meromorphic horizontal sections of

homK(E, E
1
), which gives the desired result.

B) To prove that Φ is essentially surjective, we need to introduce another functor

Φ̂ which we will now define.

4.3 Lemma. Let (Ê, ∂) be a vector bundle with connection over K; there exists

(E
1
, ∂) over K whose completion is isomorphic to (Ê, ∂).

Take a basis of Ê, say (e
1
, · · · , en) and let M be the matrix of ∂ in this basis; the

change of basis (e
1
, · · · , en) = ( f

1
, · · · , fn)S transforms M into N, satisfying

N = S MS −1 −
dS
dx

S −1, or equivalently

dS
dx
= S M − MS ;

in this situation, we will say that N is equivalent to M; if moreover, S is of the

form Id+(terms of order > 0), we will say that N is strictly equivalent to M.

The lemma is a consequence of the following result: any N sufficiently close to

M, i.e. such that N − M is of order ≫ 0, is strictly equivalent to M.

It suffices to establish this result after a suitable ramification tp = x; indeed, to

go back to the initial situation, it will suffice to keep in the matrix S obtained

the integral powers of x. The result is then proved at the same time as the

formal reduction (2.1); see on this subject the calculations of [Rob80].

Let then (Ê, ∂) be a K̂-vector bundle with connection, and let (E
1
, ∂) over K,

endowed with an isomorphism λ
1
: (Ê, ∂)→ (Ê

1
, ∂). We set Φ̂(Ê, ∂) = grΦ(E

1
, ∂);

if we have another system (E
2
, ∂, λ

2
), with λ

2
: (Ê, ∂)

∼
−→ (Ê

2
, ∂), we have a

well-defined isomorphism grΦ(E
1
, ∂)

∼
−→ grΦ(E

2
, ∂) defined as follows: in a

sufficiently small sector U, λ
2
λ−1

1
is represented by a horizontal section µ of
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A(U) ⊗K homK(E
1
, E

2
), whence a map V

1
→ V

2
over U (Vi = Φ(Ei, ∂)); if we

change µ to µ′, then µ′ − µ is asymptotic to 0, i.e. belongs to hom(V
1
,V

2
)<0, so

induces 0 on the associated graded objects. Hence Φ̂(Ê, ∂) does not depend on

(E
1
, ∂). We define the map on ‘‘Hom’’ by the same process. Finally, we obtain a

commutative diagram of functors:

(vector bundles with connection over K) (I-filtered local systems)

(vector bundles with connection over K̂) (I-graded local systems)

Φ

formalize gr

Φ̂

C) We will first prove the following theorem

4.4 Theorem. Φ̂ induces an equivalence of categories.

The fact that Φ̂ is fully faithful is seen easily, by the same type of arguments as

for Φ. It remains to prove that Φ̂ is essentially surjective.

Let V be an I-graded local system; if the α ∈ I for which Vα , 0 are unramified,

the result is immediate; it suffices to take E =
⊕

(Fα ⊗K Gα), the Fα having

the same meaning as in Theorem (2.1), and the Gα being regular singular with

monodromy equal to that of Vα.

In the general case, let p be such that, after the change of variable tp = x, the

α for which Vα , 0 are unramified; let T be the covering of degree p of S and

π : T → S the projection. The resulting π∗(V) is represented by a vector bundle

with connection (F̂, ∂) over K̂[t] = L̂. Since Φ̂ is fully faithful, the action of

the Galois group Gal(T/S ) = Gal(L/K) gives an action of Gal(L/K) on (F̂, ∂);
one sees easily that it suffices to take the invariants to represent V . Whence

Theorem (4.4).

D) Let us finally show that Φ is essentially surjective; for this, it suffices to remark

the following: let V be an I-graded local system; by (4.3) and (4.4) we can

already assume that there exists an (E
1
, ∂) over K, with V

1
= Φ(E

1
, ∂), such

that gr V
1

is isomorphic to gr V . Hence, it suffices to see that Φ is a bĳection

between Cℓ(E
1
, ∂) (notations of Theorem (3.4)) and the I-filtered local systems V ′

endowed with an isomorphism gr V ′
∼
−→ gr V

1
. But, the said systems are classified

by H1(S ,Aut
0
(V

1
)), denoting by Aut

0
(V

1
) the sheaf of automorphisms of V

1
which

induce the identity on the associated graded. Moreover, Aut
0(V

1
) is the sheaf of

sections of W = Φ(EndK(E
1
), ∂) which are of the form Id+λ, with λ ∈ W<0

; this

sheaf is therefore equal to Λ
0
(E

1
, ∂) and we conclude by Theorem (3.4). □

5. An Example

To make the previous constructions more concrete, and also to prepare a later exposi-

tion, we will look explicitly at the classification of vector bundles with connection over

K which are formally isomorphic to E =
⊕

Fα ⊗K Gα, α ∈ A ⊆ I, α =
0∑
−r

ak(α)xk−1dx

(r ≥ 1 given), with Gα having regular singularities and a−r(α)s distinct for the various
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α. We will follow here the method of [BJL79]; a different method can be found in

Birkhoff [Bir13]; this last one was extended to the general case by Jurkat [Jur78].

Let V = Φ(E); we have here a decomposition V =
⊕

Vα, Vα = Φ(Fα ⊗ Gα), i.e.

a canonical lifting gr V → V . Let W be an A-filtered local system, endowed with an

isomorphism λ̂ : gr W → gr V .

The Stokes lines are here the half-lines on which Re[(a−r(α) − a−r(β))x−r] = 0; for

each pair (α, β), α , β, we thus have 2r such half-lines, each making with the preceding

one an angle

π

r
; we will denote them by Dk

αβ, k = 1, · · · , 2r. We do not exclude the case

where two such lines, corresponding to distinct pairs, are confounded. We will call an

open interval U ⊆ S (or the corresponding sector) ‘‘good’’ if it has the following property:

for any pair (α, β), U intersects one and only one of the half-lines D1

αβ, · · · ,D
2r
αβ.

There obviously exist good intervals (take any interval of length

π

r
whose endpoints

do not belong to any Stokes line modulo 2π, and slightly enlarge the previous intervals).

5.1 Lemma. For each U, there exists a unique lifting λ(U) : W |U → V |U of λ̂ : gr W
∼
−→

gr V .

Proof. The uniqueness of λ(U) is obvious: indeed, since one of the lines Dk
αβ meets U,

whatever the pair (α, β), α , β, α and β are globally incomparable on U; it follows that

the only automorphism of V |U that induces the identity on gr V is the identity.

To prove existence, take an open interval U
1
⊆ U and a lift λ(U

1
) : W |U → V |U of

λ̂ (this exists by Theorem (3.2)), and let θ be an endpoint of U
1
; if θ < U, it is done;

otherwise there are two cases to consider.

First case.

θ does not belong to a Stokes line. We will see that then λ extends beyond θ, which

allows us by connectivity to reach the next Stokes line.

Indeed, let U
1
be a small interval around θ, not meeting any Stokes line, and take

a lift λ(U
2
) : W |U

2

∼
−→ V |U

2
of λ̂. Number α

1
< α

2
< · · · < αp by the order of the αs in

U
2
, with p = card A.

Let eα be a basis of Vα over U
1
∪ U

2
; set fα = λ(U1

)−1eα, gα = λ(U−1
2

)eα; on U
1
∩ U

2

we have the relations fαi = gαi +
∑
j<i

gαim ji, mi j constant matrices; it follows that on U
2
,

we still have fαi ∈ Wαi
, whence the desired result.

Second case.

θ belongs to a Stokes line; let U
2

be a small interval around θ, not meeting any

other Stokes line; we will see that we can find another lift λ′(U
1
) of λ̂ that extends to

U
1
∪ U

2
. Combining with the 1st case, we will ultimately obtain the result.

Note again α
1
< · · · < αp the order of the α in a neighborhood U

1
of θ. At a point

θ′ ∈ S , the order of the α is given by Re(a−r(α)x−r), arg x = θ′, the distinct αs for which

this expression is equal being incomparable at θ′; it follows that there exist in {1, · · · , p}
disjoint intervals I

1
, · · · , Is such that for θ′ close to θ, θ′ < U

1
, with the order of the αi

as follows:

i) in each interval I j, the initial order (= in U
1
, near θ), is reversed;

ii) all other order relations are preserved.
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Choose then a lift λ(U
2
) : W |U

2

∼
−→ V |U

2
, and let fα, gα be defined as in the first case.

On U
1
∩ U

2
, we still have

fαi = gαi +
∑
j<i

gα jm ji; (5.2)

We modify the lift λ(U
1
) to λ′(U

1
) as follows:

• If i < I
1
∪ · · · ∪ Is, we take λ′−1(U

1
)eαi =

def

f ′αi
= fαi .

• If i belongs to one of the Ik, we take:

f ′αi
= fαi +

∑
j<i, j∈Ik

fα jn ji. (5.3)

This indeed gives a lift of λ̂ over U
1
whatever the ni j are chosen, since U

1
does not meet

by hypothesis any Stokes line relative to the pairs (i, j) belonging to the same interval

Ik. Now, combining (5.2) and (5.3), we verify that there exists a unique choice of the

ni j for which we still have, on U
2
: f ′αi
∈ Wαi

, i = 1, · · · , p. This proves the lemma. □

We will say that an open cover {U
1
, · · · ,U

2r} of S is ‘‘good’’ if it has the following

properties:

i) all the Uis are good;

ii) Ui meets only Ui−1 and Ui+1 (we set U
2r+1 = U

1
);

iii) Ui ∩ Ui+1 does not contain any Stokes line.

We can always find good covers (take the closed cover of S by the interval [θ
0
+

kπ/r, θ
0
+ (k + 1)π/r], θ

0
being chosen distinct from the Stokes directions modulo π/r,

and slightly enlarge the previous intervals). For each Ui, there exists a unique lift

λ(Ui) : W |Ui → V |Ui of λ̂. It is then clear that the Stokes structure is given by the

choice of the λ(Ui)λ−1(Ui+1); these are automorphisms of V |Ui∩U j inducing the identity

on the associated graded; under this sole restriction, their choice is arbitrary. For

r ≥ 2, Ui ∩ U j is a sector; with respect to the decomposition V = ⊕Vα, λ(Ui)λ−1(Ui+1) is

expressed by a strictly triangular matrix with respect to the order of the αs in Ui∩Ui+1;

if r = 1, I leave the reader to adapt. Finally, by taking bases of the Vα over Ui ∩ Ui+1,

we obtain an isomorphism Cℓ(E, ∂) ≃ CN
, with N = r

∑
α,β

dim Vα · dim Vβ.

We immediately verify that N is the irregularity in the sense of [Mal72] of (EndK E, ∂);
this property extends to the general case, treated in [Jur78].

5.4 Remark. If we change the cover (and the bases of the Vα), we obtain an auto-

morphism of CN
which we can see is polynomial. So, in fact, Cℓ(E, ∂) is naturally

endowed with an affine space structure of dimension N. As this will be useful in the

promised later exposition, I will sketch the proof. It suffices to see this: let U′ be a

good open set and λ(U′) : W |U′ → V |U′ the lift of λ̂ given by (5.1). Then, for every i
such that U′ ∩ Ui , 0, λ(U′)λ(Ui)−1 has, in a basis of V , polynomial coefficients with

respect to those of λ(Ui)λ−1(Ui+1). The only non-trivial case is when, for some i, we

have U′ ⊆ Ui ∪ Ui+1, U′ 1 Ui, U′ 1 Ui+1 (otherwise, it is easy to see that, for some

j : U′ ⊂ U j or U′ ⊃ U j); we then write the analogous equations to (5.2) and (5.3) for

8
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λ(U′)λ(Ui)−1 and λ(U′)λ(Ui+1)−1 and the relations between them, given by the coefficients

of λ(Ui)λ−1(Ui+1); we easily conclude from the fact that the obtained equations have a

unique solution for every choice of λ(Ui)λ−1(Ui+1).

6. Remarks on a Moduli Problem

We will keep the example of §5 (what we will say would generalize by using [Jur78]).

Let D be an open disk of C centered at 0, and T an analytic complex variety; denote

by Z the zero section T × {0} of T × D, and by K the sheaf of meromorphic functions

on T × D with poles in Z. We will call a ‘‘family of vector bundles with connection

on D, parametrized by T ’’ a free K-module of finite type L endowed with a partial

derivation

∂

∂x
(x the variable of D). Working with the formal completion of K along

Z, we similarly define ‘‘formal families of vector bundles with connection, parametrized

by T ’’. We call a ‘‘family of vector bundles with connection on D, endowed with a

formal isomorphism with E’’ a family

(
L,
∂

∂x

)
whose formalization

(
L̂,
∂

∂x

)
along Z is

isomorphic to the constant family defined by (Ê, ∂). We may wonder if there exists a

moduli space for these families, whose base would be Cℓ(E, ∂)an, i.e. Cℓ(E, ∂) endowed

with the analytic affine structure that has just been defined.

We can see that the answer is positive; as the problem is of limited interest, I

will only say a few words about it. First of all, to see that Cℓ(E, ∂)an is a coarse

moduli space, it suffices to see that every family of this type gives rise canonically to

an analytic map T → Cℓ(E, ∂)an; this is seen by using a theorem of Sibuya [Sib68]

which ‘‘puts parameters’’ into (3.2). To construct a universal family over Cℓ(E, ∂)an, we

essentially need to put parameters into (3.5), which presents no difficulty, and to use

Grauert’s theorem which will tell us that a vector bundle over Cn × D is trivial.

On the other hand, we can try to ‘‘algebraize’’ the previous problem: let C be the

category of free modules over C

[
x,

1

x

]
, endowed with a derivation ∂ which is regular

at infinity; let Ψ be the functor (C) → (vector bundles with connection over K) which

associates to every E in C the vector bundle E⊗C[x, 1x ]K. We see that Ψ is an equivalence

of categories as follows; first the fact that it is fully faithful results from the fact that

an analytic horizontal section of homK(Ψ(E),Ψ(F)) near zero extends to a meromorphic

function at infinity (because of the hypothesis ‘‘regular singularities’’). The surjectivity

is then proved in the usual way (extend an (E, ∂) over K to C∗ by extending the local

system of solutions, and compensate at infinity by a regular singularity).

We could then pose an algebraic moduli problem analogous to the previous one for

the families of (C) formally isomorphic at the origin to the constant family (E, ∂); I will

not give a precise statement, because the following example shows that there exists no

algebraic structure on Cℓ(E, ∂)an that makes it a (even coarse) moduli space for these

families.

We take (E(β, γ), ∂) = (K2, ∂) the family depending on (β, γ) ∈ C2
whose connection

matrix is

1

x2

(
1 0

0 −1

)
+

1

x

(
α β
γ δ

)
(α, δ fixed); for given β, γ, there exists a unique formal

isomorphism given by S = Id+(terms of order ≥ 1) near (E(0, 0), ∂).
On the other hand, Cℓ(E(0, 0), ∂)an = C

2
; so we have an analytic map C2 → C2

given

9
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by (β, γ) 7→ the class of (E(β, γ), ∂). It turns out that we can here explicitly calculate

this map [JLP76], [MR82]; among other things, we find that in general the inverse image

of a point of C2
is countable; so this map is not "algebraizable".

A. Appendix

Proof of Theorem 3.5. Let A′ be the subspace of A consisting of f whose asymptotic

expansion has no poles; let Gℓ0(n,A′) be the subsheaf of group of Gℓ(n,A′) formed

of matrices asymptotic to the identity. By taking a basis e
1
, · · · , en of E, it obviously

suffices to prove the following assertion.

A.1 Proposition. The map H1(S ,Gℓ0(n,A′))→ H1(S ,Gℓ(n,A′) has image 0.

We will first trivialize the situation ‘‘over C∞’’; let ΓR be the sheaf on S defined

as follows: the elements of ΓRθ are represented by matrices of size n in a small closed

sector {| arg x− θ| ≤ ε, |r| ≤ ε} ∪ {0} of the form Id+M, M being C∞ (with respect to Re x
and Im x) and flat at 0, i.e. all its derivatives with respect to Re x and Im x are zero

at 0; this is again a sheaf of groups over R.

A.2 Lemma. H1(S ,ΓR) = 0.

Consider the ‘‘polar coordinates’’ map S × R+ → C defined by (θ, r) 7→ reiθ
; by the

inverse image of this map, ΓR becomes the restriction to S of the sheaf of C∞ matrices

on S × R+, tangent to the identity to infinite order along S . The elements of H1(S ,ΓR)
therefore classify the C∞ vector bundles over S × R+ near S , formally trivial along S .

Such a trivialization extends to E, which gives the desired result.

Next, take an open cover {Ui} of S , and let {βi j} be a cocycle of Gℓ0(n,A′) in this

cover; the previous lemma shows that there exist αi ∈ Γ(Ui,Γ
R) such that βi j = αiα

−1
j ,

or again αi = βi jα j, whence α−1i
∂

∂x̄
αi = α

−1
j
∂

∂x̄
α j; let γ be the common value of these

expressions; it is a C∞ matrix near 0, and zero to infinite order at 0.

It is then well known that there exists a C∞ matrix δ near 0, with δ(0) = Id, and

such that δ−1
∂δ

∂x̄
= γ; set α′i = αiδ

−1
; the α′i are holomorphic, α′i(0) = Id, and βi j = α

′
iα
′−1
j .

Whence the proposition. □
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