Classifications of Irregular Connections of One Variable

B. Malgrange

Translated by Claude (AI) and Si-Yang Liu

1982

1. Introduction

Let $O = \mathbb{C}\{x\}$ be the space of germs of holomorphic functions at the origin, and $K =$ $O[x^{-1}]$ its field of fractions. We will denote by \hat{O} and \hat{K} their respective completions. Let *E* be a finite dimensional vector space over *K* and ∂ a connection on *E*, i.e. a C-linear map $\partial: E \to E$ satisfying $\partial(\varphi e) = \frac{d\varphi}{dx}e + \varphi \partial e$ for $\varphi \in K$, $e \in E$. Recall that ∂ is said to be "regular" if there exists a basis (e_1, \dots, e_n) of *E* over *K* in which the matrix *M* of the connection (defined by $\partial e_i = \sum m_i e_i$) has a simple pole. Otherwise ∂ is said *M* of the connection (defined by $\partial e_i = \sum m_{ij} e_i$) has a simple pole. Otherwise, ∂ is said to be "irrequier" to be "irregular".

The classification in the regular case is assumed to be known. I propose here to explain the irregular case. The principle of this classification goes back to the fundamental paper of Birkhoff [\[Bir13\]](#page-9-0), too long ignored except by a small number of specialists. In fact, Birkhoff treats the case where, in a suitable basis, the most polar part of M has distinct eigenvalues; on this case, see also [\[BJL79\]](#page-9-1). In the general case, a detailed study can be found in Jurkat [\[Jur78\]](#page-10-0). I will give here a version of the classification due to Deligne [\[Del\]](#page-9-2), which relies on previous remarks from [\[Sib77\]](#page-10-1) and [\[Mal79\]](#page-10-2). In all these methods, an essential ingredient is a theorem on holomorphic invertible matrix functions by Sibuya [\[Sib90\]](#page-10-3), a variant of which is already essentially found in [\[Bir13\]](#page-9-0).

I have to apologize for having delayed so long in writing an exposition on these questions, and also for the impossibility in which I find myself of giving the totality of the bibliographical references on this subject, references which should begin at least at Poincaré, or even Laplace.

2. Formal Classification

If *L* is a finite extension of *K*, there exists $t \in L$ and p a positive integer such that $t^p = x$, and $L = \mathbb{C}{t}$ [*t*¹] = $K[t]$. The given connection ∂ on *E* extends in a unique way to $E \otimes L = F$ by $(t\partial_t)(t^k \otimes e) = k(t^k \otimes e) + k(t^k \otimes e)$ 1 *p* $(t^k \otimes (x \partial_x)e)$. If $\alpha \in L \otimes dt$, we will denote by *F*^{α} the *L*-vector space of rank 1 endowed with the connection defined by $\partial_t f = \frac{d}{dt}$ f . It

is classical that F^{α} is isomorphic to F^{β} if and only if $\alpha - \beta$ has a simple pole, with the coefficient of t^{-1} being an integer coefficient of t^{-1} being an integer.

The following theorem is classical (Fabry, Hukuhara, Turrittin; I don't know where the first complete proof can be found; one can find it in [\[Was87\]](#page-10-4) and more recent ones in [\[Lev75\]](#page-10-5), [\[Mal72\]](#page-10-6), and [\[Rob80\]](#page-10-7)).

2.1 THEOREM. Let (E, ∂) be a vector bundle with connection over *K*. After possibly a ramification $t^p = x$, one can find a formal isomorphism

$$
E \otimes_{\hat{K}} \hat{L} \cong \bigoplus_{\alpha} (F^{\alpha} \otimes_{\hat{L}} G^{\alpha}),
$$

where the F^{α} have the meaning given above (with L replaced by \hat{L}), and where the G^{α} are regular.

By decomposing the G^{α} according to their indecomposable factors, one then obtains the indecomposable factors of *E* ⊗ *L*. This decomposition is unique in the sense of the Krull-Schmidt theorem.

3. Asymptotic Expansions

Let (E, ∂) and (E', ∂) be two vector bundles with connection over *K*, and let $\hat{\alpha}$: $(\hat{E}', \partial) \rightarrow$ (\hat{E}', ∂) be an isomorphism of their completions. If *E*, and therefore *E'*, is regular, we know that $\hat{\alpha}$ comes from an isomorphism $\alpha: (E' | \partial) \rightarrow (E | \partial)$. This is no longer true in know that $\hat{\alpha}$ comes from an isomorphism $\alpha: (E', \partial) \to (E, \partial)$. This is no longer true in contract is not require more precisely one can see that there exist $\hat{\alpha}$ that do not general if E is not regular; more precisely, one can see that there exist $\hat{\alpha}$ that do not descend if and only if $(End_K(E), \partial)$ is irregular.

To obtain an analytic classification, one must therefore introduce other invariants, called ''analytic invariants''; a first version of these invariants ([S], [\[Mal79\]](#page-10-2)) involves sectorial asymptotic expansions, which are defined as follows:

We work in a neighborhood of $0 \in \mathbb{C}$; we perform a real blowup of 0, i.e. we pass to polar coordinates (ρ, θ) $\in \mathbb{R}_+ \times T$; we denote by *S* the inverse image $\{0\} \times T$ of 0, and we construct a sheaf $\mathcal A$ on S as follows:

Let *U* be an open subset of *S*, and \tilde{U} the associated angular sector of \mathbb{C} , i.e. $\{(\rho, \theta)|\rho > 0, \theta \in U\}$; let $\mathcal{A}(U)$ be the set of germs at 0 of holomorphic functions f in \hat{U} , admitting at 0 a Laurent asymptotic expansion (I am taking here a slightly different notation from that of [\[Mal79\]](#page-10-2)); more precisely, we require that there exists a formal series^{\sum} *n*≤*n*⁰ $a_n x^n \in \hat{K}$ such that, for all $p \in \mathbb{Z}$, and *x* close to 0,

$$
\left|f(x)-\sum_{n\leq p}a_nx^n\right|\leq C_p\left|x^{p+1}\right|,\ C_p>0.
$$

A classical theorem of Ritt ensures that, if $U \neq S$, the "Laurent series" map $\overline{\mathcal{A}}(U) \rightarrow L$ is surjective (see e.g. [\[Was87\]](#page-10-4)); in what follows, we will denote this map by $T: f \mapsto \tilde{f}$.

3.1 DEFINITION. We denote by A the sheaf associated to the presheaf $U \mapsto \overline{\mathcal{A}}(U)$.

With this in place, the first result on which we will rely is the following fundamental theorem.

3.2 THEOREM (Hukuhara-Turrittin). Let (E, ∂) be a vector bundle with connection over *K*. Then, for all $\theta \in S$, the map *T*: ker(∂ , $\mathcal{A}_{\theta} \otimes_K E$) \rightarrow ker(∂ , \hat{E}) is surjective.

A proof of this theorem can be found in $[Was87]$ ^{[1](#page-2-0)}.

Note that the usual statements are apparently stronger, since one proves the previous result in any sector of opening $\langle \pi, \pi \rangle$ being the Katz invariant of (E, ∂) . In fact, it is known that cohomological arguments combined with the formal theory explained in §2 suffice to recover this result from (3.2) . We will see arguments of this type in §5.

Let us now fix an (E, ∂) . We will use the previous result to study the vector bundles with connection (E', ∂) endowed with an isomorphism of the completions $\hat{\alpha}$: $(\hat{E}', \partial) \rightarrow$ (E, ∂) (we follow here the reasoning of [\[Mal79\]](#page-10-2)); for this, we apply the previous theorem to $\hat{\alpha}$ considered as a horizontal section of hom_{$\hat{K}(\hat{E}', \hat{E})$ = hom_K $(E', E)^{\wedge}$; there thus exists a covering $\hat{H}(\lambda)$ of S such that in H_1 , $\hat{\alpha}$ is represented by α , a horizontal section over} a covering $\{U_i\}$ of *S* such that, in U_i , $\hat{\alpha}$ is represented by α_i , a horizontal section over *U* of hom $\alpha(\mathcal{A} \otimes_{U_i} F')$ $\hat{\mathcal{A}} \otimes_{U_i} F'$. since $\hat{\alpha}_i = \hat{\alpha}$ is invertible, we easily deduce that α_i *U* of hom_A($\mathcal{A} \otimes_K E'$, $\mathcal{A} \otimes_K E$); since $\hat{\alpha}_i = \hat{\alpha}$ is invertible, we easily deduce that α_i exists. Then for all *(i, j)*, $\alpha_i \alpha^{-1} = \beta_i$, is an invertible horizontal section over *II*. ΩI , of exists. Then, for all (i, j) , $\alpha_i \alpha_j^{-1} = \beta_{ij}$ is an invertible horizontal section over $U_i \cap U_j$ of End_A($\mathcal{A} \otimes_K E$) = $\mathcal{A} \otimes_K \text{End}_K(E)$; moreover, as $\hat{\alpha}_i = \hat{\alpha}_j$, we have $\hat{\beta}_{ij} =$ Id.
We then denote by $\Lambda(F)$ the sheaf of invertible sections of $\mathcal{A} \otimes_K \text{End}$

We then denote by $\Lambda(E)$ the sheaf of invertible sections of $\mathcal{A} \otimes_K \text{End}_K(E)$; by taking a basis e_1, \dots, e_n of *E*, $\Lambda(E)$ identifies with the sheaf $G\ell(n, \mathcal{A})$ of invertible matrices with coefficients in \mathcal{A} . Let $\Lambda_e(F)$ be the subsheaf of elements of $\Lambda(F)$ asymptotic to with coefficients in A. Let $\Lambda_0(E)$ be the subsheaf of elements of $\Lambda(E)$ asymptotic to the identity, and $\Lambda_0(E, \partial)$ the subsheaf of horizontal sections for ∂ of $\Lambda_0(E)$. What precedes gives a cocycle $\{\beta_{ij}\}$ of $\Lambda_0(E, \partial)$ for the covering $\{U_i\}$, from which we obtain by passing to the quotient a cohomology class $\gamma(\hat{\alpha}) \in H^1(S, \Lambda_0(E, \partial))$; one easily verifies that $\gamma(\hat{\alpha})$ depends only on $\hat{\alpha}$ and not on the chosen covering and liftings α . that $\gamma(\hat{\alpha})$ depends only on $\hat{\alpha}$, and not on the chosen covering and liftings α_i .
Let us say on the other hand that $(F' | \hat{\alpha} | \hat{\alpha})$ and $(F'' | \hat{\alpha} | \hat{\alpha}')$ are equival

Let us say on the other hand that $(E', \partial, \hat{\alpha})$ and $(E'', \partial, \hat{\alpha}')$ are equivalent if the norphism $\hat{\alpha}'^{-1}\hat{\alpha}$; $(\hat{F}', \partial) \rightarrow (\hat{F}''$, $\partial)$ comes from an isomorphism (necessarily unique) isomorphism $\hat{\alpha}'^{-1}\hat{\alpha}$: $(\hat{E}',\partial) \rightarrow (\hat{E}'',\partial)$ comes from an isomorphism (necessarily unique)
 $(F', \partial) \rightarrow (F'', \partial)$. We then have the following result: $(E', \partial) \rightarrow (E'', \partial)$. We then have the following result:

3.3 LEMMA. $(E', \partial, \hat{\alpha})$ and $(E'', \partial, \hat{\alpha}')$ are equivalent if and only if $\gamma(\hat{\alpha}) = \gamma(\hat{\alpha}')$.

Proof. Suppose we have $\gamma(\hat{\alpha}) = \gamma(\hat{\alpha}')$. By refining the coverings if necessary, we may assume that the $\hat{\alpha}$ and $\hat{\alpha}'$ are defined on the same covering *II*. and that there exist *R*. assume that the $\hat{\alpha}$ and $\hat{\alpha}'$ are defined on the same covering $\{U_i\}$ and that there exist $\beta_i \in \Gamma(I_i, \Lambda_o(F, \hat{\alpha}))$ such that on $I_i \cap I_j$, $\hat{\alpha}' \hat{\alpha}'^{-1} = \beta_i \alpha_j e^{-1} \beta_i e^{-1}$, we then have $\alpha'^{-1} \beta_i \alpha_j = \alpha'^{-1} \beta_i \alpha_j$. $\Gamma(U_i, \Lambda_0(E, \partial))$ such that on $U_i \cap U_j$, $\hat{\alpha}'_i$
these functions glue together into a g $\int_{i}^{i} \hat{\alpha}'_{j}^{-1} = \beta_{i} \alpha_{i} \alpha_{j}^{-1}$ *j* these functions glue together into a global section on *S* of $\mathcal{A} \otimes \text{hom}_K(E', E'')$, a section
which will necessarily be meromorphic, so will belong to hom (F', F'') ; moreover, δ will −1 ⁻¹; we then have $\alpha_j^{\prime -1}$
n S of $\mathcal{A} \otimes \text{hom}_{\mathcal{A}}(F)$ $q_j^{-1}\beta_j\alpha_j = \alpha'_i^{-1}$
F' F'') a sec $\iota_i^{-1}\beta_i\alpha_i;$
section which will necessarily be meromorphic, so will belong to hom_K (E', E'') ; moreover, δ will obviously be invertible, and will satisfy $\delta = \hat{\alpha}'^{-1}\hat{\alpha}$ on passing to asymptotic expansions: obviously be invertible, and will satisfy $\delta = \hat{\alpha}'^{-1}\hat{\alpha}$ on passing to asymptotic expansions;
hence $(F' | \hat{\alpha} \hat{\alpha})$ and $(F'' | \hat{\alpha} \hat{\alpha}')$ are equivalent. The converse is proved similarly hence $(E', \partial, \hat{\alpha})$ and $(E'', \partial, \hat{\alpha}')$ are equivalent. The converse is proved similarly. \square

Finally, let $C\ell(E, \partial)$ denote the set of $(E', \partial', \hat{\alpha})$ up to equivalence; what precedes \mathbb{R}^n an injective map $\chi: C\ell(E, \partial) \to H^1(S, \Lambda_0(E, \partial))$ gives an injective map $\gamma: C\ell(E, \partial) \to H^1(S, \Lambda_0(E, \partial))$

3.4 THEOREM. The map $\gamma: C\ell(E, \partial) \to H^1(S, \Lambda_0(E, \partial))$ is bijective.

It remains to prove surjectivity. It follows from the following theorem.

3.5 THEOREM. The map $H^1(S, \Lambda_0(E)) \to H^1(S, \Lambda(E))$ has image zero.

This result is due to Sibuya [\[Sib90\]](#page-10-3); a proof will be given in the appendix.

Let us show how this result implies [\(3.4\)](#page-2-2). Let $\beta \in H^1(S, \Lambda_0(E, \partial))$; for a suitable exing *II*. of *S*, *B* is represented by $B_1 \in \Gamma(U \cap U \cap \Lambda_0(F, \partial))$; according to (3.5) we covering $\{U_i\}$ of *S*, β is represented by $\beta_{ij} \in \Gamma(U_i \cap U_j, \Lambda_0(E, \partial))$; according to [\(3.5\)](#page-2-3) we

¹I should note on this subject that I do not know if the results that I imprudently announced without proof at the end of [\[Mal72\]](#page-10-6) and [\[Mal79\]](#page-10-2) are true in full generality.

can write $\beta_{ij} = \alpha_i \alpha_j^{-1}$
 $\alpha_i^{-1} \partial \alpha_i = \partial'$ ¹, with $\alpha_i \in \Gamma(U_i, \Lambda(E))$. Then endow $\mathcal{A} \otimes_K E|U_i$ with the connection connections glue together to give a connection ∂' on *E'*. Moreover, we have $\hat{\alpha}_i = \hat{\alpha}_j$, so the $\hat{\alpha}$ define an isomorphism $\hat{\alpha} \cdot \hat{F} \rightarrow \hat{F}$ it is then clear by construction that $\hat{\alpha}$ is an −1 $i^{-1}\partial\alpha_i = \det_{\det}$ $\hat{U}_i \cap U_j$, we have $\hat{\theta}' = \hat{\theta}$ since $\beta_{ij} = \alpha_i^{-1}$ $\int_{i}^{-1} \alpha_j$ is horizontal; hence these the $\hat{\alpha}_i$ define an isomorphism $\hat{\alpha}$: $\hat{E} \rightarrow \hat{E}$; it is then clear by construction that $\hat{\alpha}$ is an isomorphism $(\hat{E}, \partial') \rightarrow (\hat{E}, \partial)$, and that we have $\gamma(\hat{\alpha}) = \beta$; whence the theorem.

4. Stokes Structures

We will now translate the results of the previous paragraph in terms of asymptotic expansions of the sectorial solutions of the equations considered; I follow here Deligne [\[Del\]](#page-9-2).

Let (E, ∂) be a vector bundle with connection over *K*. Let *V* be the locally constant sheaf on *S* of sectorial horizontal sections of *E*, defined as follows: for $\theta \in S$, V_{θ} is the space of horizontal sections of (E, ∂) over a small sector $\{0 \le |x| \le \varepsilon\} \cap \{\vert \arg x - \theta \vert \le \varepsilon\}.$

Apply Theorem [\(2.1\)](#page-1-0): after possibly a ramification $t^p = x$, we can find a formal isomorphism $\hat{\lambda}$: $\hat{E} \otimes_K L \to \hat{E}_1$ where \hat{E}_1 is of the form $\bigoplus_{\alpha \in A} (F^{\alpha} \otimes_L G^{\alpha})$; by applying Theorem [\(3.2\)](#page-2-1) to hom_{*L*}(*E* ⊗_{*K*} *L*, *E*₁), we obtain a sectorial isomorphism u_{θ} in a neighborhood of $A \cdot F \otimes_{H} I \to F$, given by an invertible element of $A \otimes_{H}$ bom($F \otimes_{H} I \otimes_{H} F$), which will $\theta: E \otimes_K L \to E_1$, given by an invertible element of $\mathcal{A}_{\theta} \otimes_L \text{hom}(E \otimes_K L, E_1)$, which will therefore transform V_{θ} into $V_{\theta} \otimes (V_{\theta} \otimes L)$ being the local system of horizontal sections of E_1). therefore transform V_{θ} into $V_{1,\theta}$ ($V_{1,\theta}$ being the local system of horizontal sections of E_1). Moreover, $V_{1,\theta}$ is immediately explicit: the sections of E_1 are of the form $\sum_{n=1}^{\infty} e^{-\int a} f_a$,

where f_{α} is a solution of an equation with regular singularities; by u_{θ} , we deduce the asymptotic behavior of the horizontal sections of (E, ∂) in a sector near θ ; in particular, we can put a partial order on V_{θ} according to which exponentials intervene in the said asymptotic behavior. This leads to the following construction.

Let *I* be the following local system on *S*: over a sector we take the forms $\sum_{i=1}^{+\infty} a_k x^{k/p} dx$ −*n*

(*p* any positive integer), modulo poles of order \leq 1.

On *I*, we define the following partial order: for $θ ∈ S$, we have $α <_θ β$ if $e^{-\int (α-β)}$ is
why growing (i.e. $Q(|x|^{-N})$ for some $N > 0$) in a small sector around $θ$. Note that for slowly growing (i.e. $O(|x|^{-N})$ for some $N > 0$) in a small sector around θ . Note that, for given α and β , $\alpha \neq \beta$, there exists a finite number of points θ of S (or more exactly of given α and β , $\alpha \neq \beta$, there exists a finite number of points θ of *S* (or more exactly, of a finite covering of *S*) such that α and β are incomparable in the neighborhood of θ ; in this case, for θ' near θ on one side, we will have $\alpha <_{\theta'} \beta$; on the other side, we will have $\beta <_{\theta} \alpha$ (we write ϵ for ϵ and \pm). The corresponding half-lines are traditionally have $\beta <_{\theta'} \alpha$ (we write \lt for \le and \neq). The corresponding half-lines are traditionally called the "Stokes lines" relative to (α, β) called the "Stokes lines" relative to (α, β) .

4.1 DEFINITION. Let *V* be a local system (= a sheaf locally isomorphic to \mathbb{C}^n) on *S*. A Stokes structure, or *I*-filtration of *V* is a family of subsheaves V^{α} , indexed by *I*, satisfying the following property:

For all $\theta \in S$, there exists a decomposition $V_{\theta} = \bigoplus V_{\alpha,\theta}$ such that for all θ' near θ

$$
V^{\alpha}_{\theta'} = \bigoplus_{\beta \leq_{\theta'} \alpha} V_{\beta, \theta}.
$$

(Beware that the V^{α} are not subsheaves in the usual sense, since they are indexed by a local system and not a set).

We define Gr *V* by $(\text{Gr } V)_{\theta}^{\alpha} = \bigoplus V_{\theta}^{\alpha}$ $\int \sum V_a^{\beta}$; the property [\(4.1\)](#page-3-0) ensures that the

(Gr V)^{α} form a family of local systems indexed by *I*(same warning as above).

With this in place, let (E, ∂) be a vector bundle with connection over K, and V the local system of its solutions; the construction at the beginning of this paragraph provides a Stokes structure on *V*, which we can further restrict to indexing by the α that intervene in the decomposition of E_1 , the others playing no role.

What precedes gives a functor

 Φ : (vector bundles with connection over $K \rightarrow (I$ -filtered local systems),

the map on ''Hom'' being evident. The result is then the following.

4.2 THEOREM. Φ is an equivalence of categories.

- *Proof.* A) Let us first show that Φ is fully faithful. For this, consider two vector bundles with connection (E, ∂) and (E_1, ∂) , and let $F = \text{hom}_K(E, E_1)$, endowed
with ∂ ; set $V = \Phi(F, \partial)$, $V = \Phi(F, \partial)$, $W = \Phi(F, \partial)$; one immediately verifies with ∂ ; set $V = \Phi(E, \partial)$, $V_1 = \Phi(E_1, \partial)$, $W = \Phi(F, \partial)$; one immediately verifies that if we denote by \overline{V} the local system *V* where we have forgotten the filtration that, if we denote by \bar{V} the local system *V* where we have forgotten the filtration, we have $\overline{W} = \underline{\text{hom}}(\overline{V}, \overline{V}_1)$, and that moreover *W* is endowed with the filtration defined by the feet that W^{α} mans V^{β} into $V^{\alpha+\beta}$ for all β . In particular, hom(*V*, *V*) defined by the fact that W^{α} maps V^{β} into $V_1^{\alpha+\beta}$ for all β . In particular, hom (V, V_1)
identifies with the sections of W^0 i.e., the meromorphic horizontal sections of identifies with the sections of W^0 , i.e. the meromorphic horizontal sections of $hom_K(E, E₁)$, which gives the desired result.
	- B) To prove that Φ is essentially surjective, we need to introduce another functor $\hat{\Phi}$ which we will now define.

4.3 LEMMA. Let (\hat{E}, ∂) be a vector bundle with connection over *K*; there exists (E_1, ∂) over *K* whose completion is isomorphic to (\hat{E}, ∂) .

Take a basis of \hat{E} , say (e_1, \dots, e_n) and let *M* be the matrix of ∂ in this basis; the change of basis $(e_1, \dots, e_n) = (f_1, \dots, f_n)S$ transforms *M* into *N* satisfying change of basis $(e_1, \dots, e_n) = (f_1, \dots, f_n)S$ transforms *M* into *N*, satisfying

$$
N = S\,MS^{-1} - \frac{dS}{dx}S^{-1}, \text{ or equivalently } \frac{dS}{dx} = S\,M - MS;
$$

in this situation, we will say that *N* is equivalent to *M*; if moreover, *S* is of the form Id +(terms of order > 0), we will say that N is strictly equivalent to M.

The lemma is a consequence of the following result: any *N* sufficiently close to *M*, i.e. such that $N - M$ is of order $\gg 0$, is strictly equivalent to *M*.

It suffices to establish this result after a suitable ramification $t^p = x$; indeed, to go back to the initial situation, it will suffice to keep in the matrix *S* obtained the integral powers of *x*. The result is then proved at the same time as the formal reduction [\(2.1\)](#page-1-0); see on this subject the calculations of [\[Rob80\]](#page-10-7).

Let then (\hat{E}, ∂) be a \hat{K} -vector bundle with connection, and let (E_1, ∂) over K , and over E , ∂ and ∂ isomorphism $\lambda : (\hat{F}, \partial) \to (\hat{F}, \partial)$. We set $\hat{D}(\hat{F}, \partial) = \text{er } \hat{D}(E, \partial)$. endowed with an isomorphism $\lambda_1: (\hat{E}, \partial) \to (\hat{E}_1, \partial)$. We set $\hat{\Phi}(\hat{E}, \partial) = \text{gr } \Phi(E_1, \partial);$
if we have another system (E, ∂, λ) , with $\lambda: (\hat{E}, \partial) \to (\hat{E}, \partial)$, we have a if we have another system $(E_2, \partial, \lambda_2)$, with λ_2 : $(\hat{E}, \partial) \rightarrow (\hat{E}_2, \partial)$, we have a
well defined isomorphism or $\Phi(E_2, \partial) \rightarrow \text{or } \Phi(E_2, \partial)$ defined as follows: in a well-defined isomorphism $gr \Phi(E_1, \partial) \rightarrow gr \Phi(E_2, \partial)$ defined as follows: in a sufficiently small sector $U \to \lambda^{-1}$ is represented by a horizontal section U of sufficiently small sector U , $\lambda_2 \lambda_1^{-1}$ is represented by a horizontal section μ of

 $\mathcal{A}(U) \otimes_K \text{hom}_K(E_1, E_2)$, whence a map $V_1 \to V_2$ over U $(V_i = \Phi(E_i, \partial))$; if we change *u* to *u'* then *u'* = *u* is asymptotic to 0 i.e. belongs to hom $(V, V_2)^{0}$ so change μ to μ' , then $\mu' - \mu$ is asymptotic to 0, i.e. belongs to $\underline{\text{hom}}(V_1, V_2)^{<0}$, so induces 0 on the associated graded objects. Hence $\hat{\text{on}}(\hat{F}, \hat{\text{d}})$ does not depend on induces 0 on the associated graded objects. Hence $\hat{\Phi}(\hat{E}, \partial)$ does not depend on (E_1, ∂) . We define the map on "Hom" by the same process. Finally, we obtain a commutative diagram of functors: commutative diagram of functors:

(vector bundles with connection over *K*)
$$
\xrightarrow{\Phi}
$$
 (*I*-filtered local systems)
\n
$$
\downarrow^{\text{formalize}}
$$
\n(vector bundles with connection over \hat{K}) $\xrightarrow{\hat{\Phi}}$ (*I*-graded local systems)

C) We will first prove the following theorem

4.4 Theorem. Φˆ induces an equivalence of categories.

The fact that $\hat{\Phi}$ is fully faithful is seen easily, by the same type of arguments as for Φ . It remains to prove that $\hat{\Phi}$ is essentially surjective.

Let *V* be an *I*-graded local system; if the $\alpha \in I$ for which $V_{\alpha} \neq 0$ are unramified, the result is immediate; it suffices to take $E = \bigoplus (F^{\alpha} \otimes_K G^{\alpha})$, the F^{α} having the same meaning as in Theorem (2.1) , and the G^{α} being regular singular with monodromy equal to that of V^{α} .

In the general case, let p be such that, after the change of variable $t^p = x$, the *α* for which *V^α* ≠ 0 are unramified; let *T* be the covering of degree *p* of *S* and $π$ $T → S$ the projection. The resulting $π$ ^{*}(*V*) is represented by a vector bundle $\pi: T \to S$ the projection. The resulting $\pi^*(V)$ is represented by a vector bundle
with connection $(\hat{F}, \hat{\sigma})$ over $\hat{K}[t] = \hat{I}$. Since $\hat{\Phi}$ is fully faithful, the action of with connection $(\hat{F}, \hat{\partial})$ over $\hat{K}[t] = \hat{L}$. Since $\hat{\Phi}$ is fully faithful, the action of the Galois group Gal(T/S) = Gal(L/K) gives an action of Gal(L/K) on (\hat{F}, ∂); one sees easily that it suffices to take the invariants to represent *V*. Whence Theorem [\(4.4\)](#page-5-0).

D) Let us finally show that Φ is essentially surjective; for this, it suffices to remark the following: let *V* be an *I*-graded local system; by (4.3) and (4.4) we can already assume that there exists an (E_1, ∂) over *K*, with $V_1 = \Phi(E_1, \partial)$, such
that or *V*, is isomorphic to or *V*. Hence it suffices to see that Φ is a bijection that gr V_1 is isomorphic to gr *V*. Hence, it suffices to see that Φ is a bijection between $C\ell(E_1, \partial)$ (notations of Theorem [\(3.4\)](#page-2-2)) and the *I*-filtered local systems *V'*
endowed with an isomorphism or *V'* $\tilde{\rightarrow}$ or *V*. But the said systems are classified endowed with an isomorphism gr $V' \rightarrow$ gr V_1 . But, the said systems are classified by $H^1(S, \underline{\text{Aut}}_0(V_1))$, denoting by $\underline{\text{Aut}}_0(V_1)$ the sheaf of automorphisms of V_1 which
induce the identity on the associated graded. Moreover, $\Delta u t^0(V_1)$ is the sheaf of induce the identity on the associated graded. Moreover, $\underline{\mathrm{Aut}}^0(V_1)$ is the sheaf of sections of $W = \Phi(\text{End}_K(E_1), \partial)$ which are of the form $\text{Id} + \lambda$, with $\lambda \in W^{<0}$; this sheaf is therefore equal to $\Lambda_c(E, \partial)$ and we conclude by Theorem (3.4) sheaf is therefore equal to $\Lambda_0(E_1, \partial)$ and we conclude by Theorem [\(3.4\)](#page-2-2). □

5. An Example

To make the previous constructions more concrete, and also to prepare a later exposition, we will look explicitly at the classification of vector bundles with connection over

K which are formally isomorphic to $E = \bigoplus F^{\alpha} \otimes_K G^{\alpha}$, $\alpha \in A \subseteq I$, $\alpha = \sum_{r=1}^{n}$ $\overline{0}$ $\sum_{-r} a_k(\alpha) x^{k-1} dx$ $(r \ge 1)$ given), with G^{α} having regular singularities and $a_{-r}(\alpha)$ s distinct for the various α . We will follow here the method of [\[BJL79\]](#page-9-1); a different method can be found in Birkhoff [\[Bir13\]](#page-9-0); this last one was extended to the general case by Jurkat [\[Jur78\]](#page-10-0).

Let $V = \Phi(E)$; we have here a decomposition $V = \bigoplus_{\alpha} V_{\alpha}$, $V_{\alpha} = \Phi(F^{\alpha} \otimes G^{\alpha})$, i.e. a canonical lifting gr $V \to V$. Let W be an A-filtered local system, endowed with an isomorphism $\hat{\lambda}$: gr $W \rightarrow$ gr V .

The Stokes lines are here the half-lines on which $Re[(a_{-r}(a) - a_{-r}(\beta))x^{-r}] = 0$; for
h pair (a, β) , $\alpha \neq \beta$, we thus have 2r such half-lines, each making with the preceding each pair (α, β) , $\alpha \neq \beta$, we thus have 2*r* such half-lines, each making with the preceding one an angle $\frac{\pi}{r}$; we will denote them by $D_{\alpha\beta}^k$, $k = 1, \dots, 2r$. We do not exclude the case where two such lines, corresponding to distinct pairs, are confounded. We will call an open interval $U \subseteq S$ (or the corresponding sector) "good" if it has the following property: for any pair (α, β) , *U* intersects one and only one of the half-lines $D_{\alpha\beta}^1, \dots, D_{\alpha\beta}^{2r}$.

There obviously exist good intervals (take any interval of length $\frac{\pi}{2}$ whose endpoints do not belong to any Stokes line modulo 2π , and slightly enlarge the previous intervals). 5.1 LEMMA. For each *U*, there exists a unique lifting $\lambda(U)$: $W|U \to V|U$ of $\hat{\lambda}$: gr $W \stackrel{\sim}{\to}$ gr *V*.

Proof. The uniqueness of $\lambda(U)$ is obvious: indeed, since one of the lines $D_{\alpha\beta}^k$ meets *U*, whatever the pair (α, β) , $\alpha \neq \beta$, α and β are globally incomparable on *U*; it follows that whatever the pair (α, β) , $\alpha \neq \beta$, α and β are globally incomparable on *U*; it follows that the only automorphism of $V|U$ that induces the identity on gr V is the identity.

To prove existence, take an open interval $U_1 \subseteq U$ and a lift $\lambda(U_1)$: $W|U \to V|U$ of $\hat{\lambda}$ (this exists by Theorem [\(3.2\)](#page-2-1)), and let *θ* be an endpoint of *U*₁; if *θ* \notin *U*, it is done; otherwise there are two cases to consider otherwise there are two cases to consider.

First case.

θ does not belong to a Stokes line. We will see that then λ extends beyond θ, which allows us by connectivity to reach the next Stokes line.

Indeed, let U_1 be a small interval around θ , not meeting any Stokes line, and take a lift $\lambda(U_2)$: $W|U_2 \to V|U_2$ of λ . Number $\alpha_1 < \alpha_2 < \cdots < \alpha_p$ by the order of the α s in U_2 , with $p = \text{card } A$.

Let e_α be a basis of V_α over $U_1 \cup U_2$; set $f_\alpha = \lambda (U_1)^{-1} e_\alpha$, $g_\alpha = \lambda (U_2^{-1}) e_\alpha$; on $U_1 \cap U_2$ we have the relations $f_{\alpha_i} = g_{\alpha_i} + \sum_{i \neq j} g_{\alpha_i} m_{ji}$, m_{ij} constant matrices; it follows that on U_2 , *we* still have $f_{\alpha_i} \in W^{\alpha_i}$, whence the desired result.

Second case.

θ belongs to a Stokes line; let U_2 be a small interval around θ, not meeting any other Stokes line; we will see that we can find another lift $\lambda'(U_1)$ of $\hat{\lambda}$ that extends to $U_1 \cup U_2$. Combining with the 1st case, we will ultimately obtain the result $U_1 \cup U_2$. Combining with the 1st case, we will ultimately obtain the result.

Note again $\alpha_1 < \cdots < \alpha_p$ the order of the α in a neighborhood U_1 of θ . At a point this expression is equal being incomparable at θ' ; it follows that there exist in $\{1, \dots, p\}$
disjoint intervals L_{max} , L_{sub} and that for θ' close to θ , $\theta' \notin U_{\text{sub}}$ with the order of the α . α' ∈ *S*, the order of the α is given by Re($a_{-r}(\alpha)x^{-r}$), arg $x = \theta'$, the distinct α s for which the expression is equal being incomparable at θ' ; it follows that there exist in 11 ... disjoint intervals I_1, \dots, I_s such that for θ' close to $\theta, \theta' \notin U_1$, with the order of the α_i as follows: as follows:

- i) in each interval I_j , the initial order (= in U_1 , near θ), is reversed;
- ii) all other order relations are preserved.

Choose then a lift $\lambda(U_2)$: $W|U_2 \to V|U_2$, and let f_α , g_α be defined as in the first case. On $U_1 \cap U_2$, we still have

$$
f_{\alpha_i} = g_{\alpha_i} + \sum_{j < i} g_{\alpha_j} m_{ji};\tag{5.2}
$$

We modify the lift $\lambda(U_1)$ to $\lambda'(U_1)$ as follows:

- If $i \notin I_1 \cup \cdots \cup I_s$, we take $\lambda'^{-1}(U_1)e_{\alpha_i} = f'_{\alpha}$ $C'_{\alpha_i} = f_{\alpha_i}$.
- If *i* belongs to one of the I_k , we take:

$$
f'_{\alpha_i} = f_{\alpha_i} + \sum_{j < i, \ j \in I_k} f_{\alpha_j} n_{ji}.\tag{5.3}
$$

This indeed gives a lift of $\hat{\lambda}$ over U_1 whatever the n_{ij} are chosen, since U_1 does not meet by hypothesis any Stokes line relative to the pairs (*i*, *^j*) belonging to the same interval I_k . Now, combining [\(5.2\)](#page-7-0) and [\(5.3\)](#page-7-1), we verify that there exists a unique choice of the n_{ij} for which we still have, on U_2 : f'_{α} $C'_{\alpha_i} \in W^{\alpha_i}$, $i = 1, \dots, p$. This proves the lemma. □

We will say that an open cover $\{U_1, \dots, U_{2r}\}$ of *S* is "good" if it has the following perties: properties:

- i) all the U_i s are good;
- ii) U_i meets only U_{i-1} and U_{i+1} (we set $U_{2r+1} = U_1$);
- iii) $U_i \cap U_{i+1}$ does not contain any Stokes line.

We can always find good covers (take the closed cover of *S* by the interval $[\theta_0 +$ $k\pi/r$, $\theta_0 + (k+1)\pi/r$, θ_0 being chosen distinct from the Stokes directions modulo π/r , and slightly enlarge the previous intervals). For each U_i , there exists a unique lift $\lambda(U_i): W|U_i \to V|U_i$ of $\hat{\lambda}$. It is then clear that the Stokes structure is given by the choice of the $\lambda(U_i)\lambda^{-1}(U_{i+1})$; these are automorphisms of $V|U_i \cap U_j$ inducing the identity
on the associated graded; under this sole restriction, their choice is arbitrary. For on the associated graded; under this sole restriction, their choice is arbitrary. For $r \geq 2$, $U_i \cap U_j$ is a sector; with respect to the decomposition $V = \bigoplus V_\alpha$, $\lambda(U_i)\lambda^{-1}(U_{i+1})$ is expressed by a strictly triangular matrix with respect to the order of the αs in $U_i \cap U_j$. expressed by a strictly triangular matrix with respect to the order of the αs in $U_i \cap U_{i+1}$;
if $r = 1$, I leave the reader to adapt. Finally, by taking bases of the *V*, over *Il*, α *Il*, if $r = 1$, I leave the reader to adapt. Finally, by taking bases of the V_α over $U_i \cap U_{i+1}$, we obtain an isomorphism $C\ell(E, \partial) \simeq \mathbb{C}^N$, with $N = r \sum_{\alpha \neq \beta} \dim V_{\alpha} \cdot \dim V_{\beta}$.

 $\overline{\alpha \neq \beta}$ We immediately verify that *N* is the irregularity in the sense of [\[Mal72\]](#page-10-6) of (End_{*K*} E , ∂); this property extends to the general case, treated in [\[Jur78\]](#page-10-0).

5.4 REMARK. If we change the cover (and the bases of the V_α), we obtain an automorphism of \mathbb{C}^N which we can see is polynomial. So, in fact, $\mathcal{C}\ell(E,\partial)$ is naturally endowed with an affine space structure of dimension N . As this will be useful in the endowed with an affine space structure of dimension *N*. As this will be useful in the promised later exposition, I will sketch the proof. It suffices to see this: let *U'* be a good open set and $\lambda(U')$: $W|U' \rightarrow V|U'$ the lift of $\hat{\lambda}$ given by [\(5.1\)](#page-6-0). Then, for every *i* such that $I' \cap I' + 0$ $\lambda(I') \lambda(I')^{-1}$ has in a basis of *V* polynomial coefficients with such that $U' \cap U_i \neq 0$, $\lambda(U')\lambda(U_i)^{-1}$ has, in a basis of *V*, polynomial coefficients with respect to those of $\lambda(U)\lambda^{-1}(U_{i+1})$. The only non-trivial case is when for some *i* we respect to those of $\lambda(U_i)\lambda^{-1}(U_{i+1})$. The only non-trivial case is when, for some *i*, we have $U' \subset U_i \cup U_j$. $U' \notin U_j$, (otherwise it is easy to see that, for some have $U' \subseteq U_i \cup U_{i+1}$, $U' \not\subset U_i$, $U' \not\subset U_{i+1}$ (otherwise, it is easy to see that, for some *j*: $U' \subset U_j$ or $U' \supset U_j$; we then write the analogous equations to [\(5.2\)](#page-7-0) and [\(5.3\)](#page-7-1) for

 $\lambda(U')\lambda(U_i)^{-1}$ and $\lambda(U')\lambda(U_{i+1})^{-1}$ and the relations between them, given by the coefficients of $\lambda(U_i)\lambda^{-1}(U_{i+1})$; we easily conclude from the fact that the obtained equations have a of $\lambda(U_i)\lambda^{-1}(U_{i+1})$; we easily conclude from the fact that the obtained equations have a unique solution for every choice of $\lambda(U_{i})\lambda^{-1}(U_{i+1})$ unique solution for every choice of $\lambda(U_i)\lambda^{-1}(U_{i+1})$.

6. Remarks on a Moduli Problem

We will keep the example of $\S5$ (what we will say would generalize by using [\[Jur78\]](#page-10-0)). Let *D* be an open disk of $\mathbb C$ centered at 0, and *T* an analytic complex variety; denote by *Z* the zero section $T \times \{0\}$ of $T \times D$, and by *K* the sheaf of meromorphic functions on $T \times D$ with poles in *Z*. We will call a "family of vector bundles with connection on *D*, parametrized by *T*'' a free *K*-module of finite type *L* endowed with a partial derivation $\frac{\partial}{\partial x}$
Z, we similarl (*x* the variable of *D*). Working with the formal completion of *K* along *Z*, we similarly define ''formal families of vector bundles with connection, parametrized by *T*''. We call a ''family of vector bundles with connection on *D*, endowed with a formal isomorphism with $E^{\cdot\cdot}$ a family $\Big($ $L, \frac{\partial}{\partial x}$ whose formalization $\left(\hat{L}, \frac{\partial}{\partial x}\right)$
(Ê, ∂). We may wonder if the ! along *Z* is isomorphic to the constant family defined by (\hat{E}, ∂) . We may wonder if there exists a moduli space for these families, whose base would be $C\ell(E, \partial)_{an}$, i.e. $C\ell(E, \partial)$ endowed with the analytic affine structure that has just been defined.

We can see that the answer is positive; as the problem is of limited interest, I will only say a few words about it. First of all, to see that $C\ell(E, \partial)$ *an* is a coarse moduli space, it suffices to see that every family of this type gives rise canonically to an analytic map $T \to C\ell(E,\partial)_{an}$; this is seen by using a theorem of Sibuya [\[Sib68\]](#page-10-8) which "puts parameters" into [\(3.2\)](#page-2-1). To construct a universal family over $C\ell(E, \partial)_{an}$, we essentially need to put parameters into [\(3.5\)](#page-2-3), which presents no difficulty, and to use Grauert's theorem which will tell us that a vector bundle over $\mathbb{C}^n \times D$ is trivial.

On the other hand, we can try to "algebraize" the previous problem: let C be the category of free modules over $\mathbb{C}^{\left[\right]}$ *x*, 1 *x* $\Big],$ endowed with a derivation ∂ which is regular at infinity; let Ψ be the functor $(C) \rightarrow$ (vector bundles with connection over K) which associates to every *E* in *C* the vector bundle $E \otimes_{\mathbb{C}[x, \frac{1}{x}]} K$. We see that Ψ is an equivalence of categories as follows; first the fact that it is fully faithful results from the fact that an analytic horizontal section of $hom_K(\Psi(E), \Psi(F))$ near zero extends to a meromorphic function at infinity (because of the hypothesis ''regular singularities''). The surjectivity is then proved in the usual way (extend an (E, ∂) over K to \mathbb{C}^* by extending the local system of solutions, and compensate at infinity by a regular singularity) system of solutions, and compensate at infinity by a regular singularity).

We could then pose an algebraic moduli problem analogous to the previous one for the families of (C) formally isomorphic at the origin to the constant family (E, ∂) ; I will not give a precise statement, because the following example shows that there exists no algebraic structure on $C\ell(E, \partial)_{an}$ that makes it a (even coarse) moduli space for these families.

We take $(E(\beta, \gamma), \partial) = (K^2, \partial)$ the family depending on $(\beta, \gamma) \in \mathbb{C}^2$ whose connection
1 (1 0) $(1/\alpha, \beta)$ matrix is 1 *x* 2 $(1 \ 0)$ $0 -1$! + 1 *x* ĺ α β $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ (α , δ fixed); for given β , γ , there exists a unique formal α . isomorphism given by $S = Id + (terms of order \ge 1)$ near $(E(0, 0), \partial)$.

On the other hand, $C\ell(E(0,0),\partial)_{an} = \mathbb{C}^2$; so we have an analytic map $\mathbb{C}^2 \to \mathbb{C}^2$ given

by $(β, γ) \mapsto$ the class of $(E(β, γ), δ)$. It turns out that we can here explicitly calculate this map [\[JLP76\]](#page-10-9), [\[MR82\]](#page-10-10); among other things, we find that in general the inverse image of a point of \mathbb{C}^2 is countable; so this map is not "algebraizable".

A. Appendix

Proof of Theorem [3.5.](#page-2-3) Let \mathcal{A}' be the subspace of \mathcal{A} consisting of f whose asymptotic expansion has no poles; let $G\ell^0(n, \mathcal{H}')$ be the subsheaf of group of $G\ell(n, \mathcal{H}')$ formed
of matrices asymptotic to the identity. By taking a basis ℓ_1, \ldots, ℓ_p of *F* it obviously of matrices asymptotic to the identity. By taking a basis e_1, \dots, e_n of *E*, it obviously
suffices to prove the following assertion suffices to prove the following assertion.

A.1 PROPOSITION. The map $H^1(S, G\ell^0(n, \mathcal{H})) \to H^1(S, G\ell(n, \mathcal{H}'))$ has image 0.

We will first trivialize the situation "over C^{∞} "; let $\Gamma^{\mathbb{R}}$ be the sheaf on *S* defined as follows: the elements of $\Gamma_{\theta}^{\mathbb{R}}$ are represented by matrices of size *n* in a small closed sector $\{|\arg x - \theta| \le \varepsilon, |r| \le \varepsilon\} \cup \{0\}$ of the form Id +*M*, *M* being C^{∞} (with respect to Re *x* and Im *x* are zero and Im *x*) and flat at 0, i.e. all its derivatives with respect to Re *x* and Im *x* are zero at 0; this is again a sheaf of groups over R.

A.2 Lemma. $H^1(S, \Gamma^R) = 0$.

Consider the "polar coordinates" map $S \times \mathbb{R}_+ \to \mathbb{C}$ defined by $(\theta, r) \mapsto re^{i\theta}$; by the presenting the restriction to *S* of the sheaf of C^{∞} matrices inverse image of this map, $\Gamma_{\mathbb{R}}$ becomes the restriction to *S* of the sheaf of C^{∞} matrices on $S \times \mathbb{R}_+$, tangent to the identity to infinite order along *S*. The elements of $H^1(S, \Gamma^{\mathbb{R}})$
therefore classify the C^{∞} vector bundles over $S \times \mathbb{R}$ near *S* formally trivial along *S* therefore classify the C^{∞} vector bundles over $S \times \mathbb{R}_+$ near S , formally trivial along S . Such a trivialization extends to *E*, which gives the desired result.

Next, take an open cover $\{U_i\}$ of *S*, and let $\{\beta_{ij}\}\$ be a cocycle of $G\ell^0(n, \mathcal{H}')$ in this exit the previous lemma shows that there exist $\alpha_i \in \Gamma(U_i, \Gamma^{\mathbb{R}})$ such that $\beta_{i,j} = \alpha_i \alpha^{-1}$ cover; the previous lemma shows that there exist $\alpha_i \in \Gamma(U_i, \Gamma^{\mathbb{R}})$ such that $\beta_{ij} = \alpha_i \alpha_j^{-1}$ *j* , or again $\alpha_i = \beta_{ij}\alpha_j$, whence α_i^{-1} −1 −
i ∂*x*̄
near $\alpha_i = \alpha_j^{-1}$ $\int_{0}^{\pi/2} \frac{\partial}{\partial \bar{x}} \alpha_j$; let γ be the common value of these zero to infinite order at 0. expressions; it is a C^{∞} matrix near 0, and zero to infinite order at 0.

It is then well known that there exists a C^{∞} matrix δ near 0, with $\delta(0) =$ Id, and such that $\delta^{-1} \frac{\partial \theta}{\partial \bar{x}} = \gamma$; set $\alpha'_i = \alpha_i \delta^{-1}$; the α'_i $\frac{\partial \bar{x}}{\partial \bar{x}}$, see a_i , $a_i e_j$, the a_i are necessionly plue, $a_i (e_j)$ and $a_i a_j$ $a_i a_j$.
Whence the proposition. α'_i are holomorphic, α'_i $\beta_i'(0) = \text{Id}$, and $\beta_{ij} = \alpha'_i$ *i* α ′−1 j^{-1} .

REFERENCES

- [Bir13] George D Birkhoff. The generalized riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations. In *Proceedings of the American Academy of Arts and Sciences*, volume 49, pages 521–568. JSTOR, 1913.
- [BJL79] W. Balser, W. B. Jurkat, and D. A. Lutz. Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations. *J. Math. Anal. Appl.*, 71(1):48–94, 1979.
- [Del] Deligne. lettres à b. malgrange. (8.1977 et 4.1978).
- [JLP76] W. Jurkat, D. Lutz, and A. Peyerimhoff. Birkhoff invariants and effective calcualtions for meromorphic linear differential equations. *J. Math. Anal. Appl.*, 53(2):438–470, 1976.
- [Jur78] W. B. Jurkat. *Meromorphe Differentialgleichungen*, volume 637 of *Lecture Notes in Mathematics*. Springer, Berlin, 1978.
- [Lev75] A. H. M. Levelt. Jordan decomposition for a class of singular differential operators. *Ark. Mat.*, 13:1–27, 1975.
- [Mal72] B. Malgrange. Sur les points singuliers des équations différentielles. In Séminaire Goulaouic-Schwartz 1971-1972, pages Exp. Nos. 20-22, 36. École Polytech., Paris, 1972. Équations aux dérivées partielles et analyse fonctionnelle,.
- [Mal79] B. Malgrange. Remarques sur les équations différentielles à points singuliers irréguliers. In *Équations différentielles et systèmes de Pfaff dans le champ* complexe (Sem., Inst. Rech. Math. Avancée, Strasbourg, 1975), volume 712 of *Lecture Notes in Math.*, pages 77–86. Springer, Berlin, 1979.
- [MR82] Jean Martinet and Jean-Pierre Ramis. Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Inst. Hautes Études *Sci. Publ. Math.*, (55):63–164, 1982.
- [Rob80] P. Robba. Lemmes de Hensel pour les opérateurs différentiels. Application à la réduction formelle des équations différentielles. *Enseign. Math. (2)*, 26(3-4):279–311 (1981), 1980.
- [Sib68] Yasutaka Sibuya. Perturbation of linear ordinary differential equations at irregular singular points. *Funkcial. Ekvac.*, 11:235–246, 1968.
- [Sib77] Yasutaka Sibuya. Stokes phenomena. *Bull. Amer. Math. Soc.*, 83(5):1075–1077, 1977.
- [Sib90] Yasutaka Sibuya. *Linear differential equations in the complex domain: problems of analytic continuation*, volume 82 of *Translations of Mathematical Monographs*. American Mathematical Society, Providence, RI, 1990. Translated from the Japanese by the author.
- [Was87] Wolfgang Wasow. *Asymptotic expansions for ordinary differential equations*. Dover Publications, Inc., New York, 1987. Reprint of the 1976 edition.