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1. COMBINATORICS
(1a) Hyperplane Arrangements.

1.1 Definition. A hyperplane arrangement is a pair 𝒱 = (𝑉 , 𝜂) where 𝑉 ⊆ ℝ𝑛 is a linear subspace of
dimension 𝑘 transverse to all coordinate hyperplanes 𝐻𝑖 = {𝑥𝑖 = 0} and 𝜂 ∈ ℝ𝑁 /𝑉 a vector.

We should regard the intersection 𝐻𝑖 ∩ (𝑉 + 𝜂) to be affine hyperplanes in the Euclidean space 𝑉 + 𝜂 ≅ ℝ𝑛,
so we see that this formulation is the same as putting 𝑛 affine hyperplanes in 𝑉 .
1.2 Example. Let 𝑉 ⊂ ℝ𝑛 be a codimension 1 hyperplane defined by the equation

𝑉 = {𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 = 0}

and write 𝜂 = (1/𝑛, 1/𝑛, ⋯ , 1/𝑛). Then we obtain a hyperplane arrangement 𝒱 = (𝑉 , 𝜂). Choosing an iso-
morphism 𝑉 + 𝜂 ≅ ℝ𝑛−1 given by (𝑥1, ⋯ , 𝑥𝑛) ↦ (𝑥1, ⋯ , 𝑥𝑛−1), we can write down the equations to all the
hyperplanes as 𝐻𝑖 ∩ (𝑉 + 𝜂) = {𝑥𝑖 = 0} for 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝐻𝑛 ∩ (𝑉 + 𝜂) = {𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛−1 + 1 = 0}.
The two-dimensional picture is given below:

FIGURE 1: TWO-DIMENSIONAL PAIR-OF-PANTS

1.3 Example. If dim𝑉 = 1, then all intersections of 𝐻𝑖 with 𝑉 + 𝜂 will be points on a real line, and we can
simply represent them as real numbers 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 in ℝ. For example, when 𝑛 = 3, the picture looks
like
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FIGURE 2: A 1-DIMENSIONAL HYPERPLANE ARRANGEMENT

An interesting question in combinatorics for hyperplane arrangements is to count the number of chambers
divided by these hyperplanes. Equip ℝ𝑛 with its usual Euclidean topology, a chamber for a given hyperplane

arrangement 𝒱 is defined to be a connected component of the complement 𝑉 ⧵
𝑛

⋃
𝑖=1

𝐻𝑖. From this definition we

directly see that the number of chambers in picture (1) is 7, while in (2) it is 4.
1.4 Definition. A chamber 𝑅 is called compact if its closure �̄� is compact in 𝑉 + 𝜂.

For the above examples, the number of compact chambers is 1 in (1) and is 2 in (2). In fact, as we’ll see,
the numbers of compact chambers in all the examples of (1.2) are always 1. As an exercise, we can also easily
show that
1.5 Proposition. If dim𝒱 = 1, then the number of chambers of 𝒱 is 𝑛+1 and the number of compact chambers
of 𝒱 is 𝑛 − 1.

(1b) Delection-restriction induction. To detect the problem of counting chambers, note that it’s always
easy to count when the dimension of 𝒱 and the number of hyperplanes are small, so we can try to attack the
problem via induction.
1.6 Definition ([LLM20]). Let 𝒱 = (𝑉 , 𝜂) be a hyperplane arrangement and 𝐻𝑖 be one of the coordiante hyper-
planes, then we write 𝒱𝐻𝑖 for the hyperplane arrangement obtained by “deleting 𝐻𝑖”, i.e. 𝒱𝐻𝑖 = (𝑊 , 𝜂′) where
𝑊 is the image of 𝑉 under the projection 𝜋𝑖 ∶ ℝ𝑛 → ℝ𝑛−1, (𝑎1 , 𝑎2, ⋯ 𝑎𝑛) ↦ (𝑎1, 𝑎2, ⋯ 𝑎𝑖−1, 𝑎𝑖+1, ⋯ 𝑎𝑛), and
𝜂′ = 𝜋𝑖(𝜂). Write𝒱𝐻𝑖 to be the hyperplane arrangement obtained by “restricting to 𝐻𝑖”, i.e. 𝒱𝐻𝑖 = (𝑉 ∩𝐻𝑖, 𝜂′)
where 𝜂′ ∈ 𝐻𝑖/(𝐻𝑖 ∩ 𝑉 ) ≅ ℝ𝑛/𝑉 is the restriction of 𝜂 to the subspace.

To count the number of chambers in a given hyperplane arrangement 𝒱, note that if dim𝑉 = 1, then the
number has been determined by Proposition 1.5. In general, we can regard 𝒱 as obtained by adding hyperplanes
𝐻1, ⋯ 𝐻𝑛 one-by-one, and we can look at the change to numbers when we add a single hyperplane. Without
loss of generality, let’s look at 𝐻𝑛: adding a single hyperplane divides each chamber it passes through into two
pieces, so the number of chambers we have in 𝒱 is the same as the number of chambers of 𝒱𝐻𝑛 plus the number
of chambers that 𝐻𝑛 goes through, which is the same as the number of chambers of 𝒱𝐻𝑛 . Therefore we obtained
the following theorem:
1.7 Theorem. Let 𝒱 be a hyperplane arrangement and 𝐻 any hyperplane in it, then we have

𝑅(𝒱) = 𝑅(𝒱𝐻 ) + 𝑅(𝒱𝐻 )

where 𝑅(𝒱) is the number of chambers of 𝒱. Similarly, for compact chambers, we have

𝐵(𝒱) = {
𝐵(𝒱𝐻 ) + 𝐵(𝒱𝐻 ), if rank𝒱 = rank𝒱𝐻 ;
0, otherwise.

Where a rank of 𝒱 is the dimension of the subspace spanned by normals to each hyperplane.
In good cases, this theorem will give us beautiful combinatorial formulae for the numbers 𝑅(𝒱). We mainly

treat with two cases.
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(1c) Two examples. There’re two spcial classes of hyperplane arrangements that we can do the computation
by hand. Generically, the configuration of hyperplanes in a given plane will not have multiple intersections or
parallel lines. In general,
1.8 Definition. A hyperplane arrangement 𝒱 is called in general position if for any collection 𝐼 of hyperplanes
in 𝒱, we have

codim⋂
𝑖∈𝐼

𝐻𝑖 = |𝐼|.

In this case, the hyperplane 𝐻𝑛 would intersect every other hyperplanes once, so 𝒱𝐻𝑛 is again a hyper-
plane arrangement in general position. Therefore, write 𝑅(𝑛, 𝑘) for the number of chambers in a hyperplane
arrangement in general position, we will get an induction formula 𝑅(𝑛, 𝑘) = 𝑅(𝑛 − 1, 𝑘 − 1) + 𝑅(𝑛, 𝑘 − 1) with
𝑅(1, 𝑘) = 𝑘 + 1 and 𝑅(𝑛, 1) = 2. Therefore, we conclude that
1.9 Theorem. 𝑅(𝑛, 𝑘) = 1 + 𝑘 + (𝑘

2) + ⋯ + (𝑘
𝑛).

Another example is when 𝜂 = 0, which is very singular since all hyperplanes intersect at a point. Equiva-
lently,
1.10 Definition. We say a hyperplane arrangement 𝒱 is central if 𝜂 = 0, or equivalently, there is a point 𝑝 ∈ 𝑉
which lies in every hyperplane.

For the latter case, we readily have
1.11 Proposition. If 𝒱 is central, then 𝐵(𝒱) = 0 and 𝑅(𝒱) = 2𝑛.

Central hyperplane arrangements arose naturally in the study of representation theory: an abstract root
system is a central hyperplane arrangement, where it admits an action of the Coxeter group by reflections. We
call these examples Coxeter arrangements. See [FR05] for more information.

(1d) Intersection poset and characteristic polynomial. If wewant the information for compact chambers,
we needmore combinatorial information subtracted from hyperplane arrangements. The information is encoded
in a poset called intersection poset:
1.12 Definition. Let 𝒱 be a hyperplane arrangement, then we associate to 𝒱 a lattice 𝐿(𝒱) defined as follows.
As a set,

𝐿(𝒱) =
{

𝐼 ⊆ {1, 2, ⋯ , 𝑛}
|⋂𝑖∈𝐼

𝐻𝑖 ≠ ∅
}

,

and the partial order is given by inclusion. This lattice is called the intersection poset of 𝒱.
The empty set - corresponding to the whole space 𝑉 - is the uniqueminimum in𝐿(𝒱). The intersection poset

is always finite, and so we can represent an intersection poset as a graph, called Hesse diagram, by drawing a
vertex for each element of 𝐿(𝒱), and an edge connecting vertices if they’re adjacent, i.e. if 𝐼 < 𝐽 but there’re
no sets 𝐾 with 𝐼 < 𝐾 < 𝐽 .

For each intersection poset 𝐿(𝒱), we associate a Möbius function 𝜇 ∶ 𝐿(𝒱) × 𝐿(𝒱) → ℤ as follows:
𝜇(𝑥, 𝑥) = 1 for all 𝑥 ∈ 𝐿(𝒱), and if 𝑥 < 𝑦,

𝜇(𝑥, 𝑦) = − ∑𝑥≤𝑧<𝑦
𝜇(𝑥, 𝑧).

This inductive formula will finally gives you the value of all points in 𝐿(𝒱). Since 𝐿(𝒱) has a prescribed
minimum ∅, we get a function 𝜇 ∶ 𝐿(𝒱) → ℤ defined by 𝜇(𝑥) ∶= 𝜇(∅, 𝑥). For each 𝑥 ∈ 𝐿(𝒱), the length ℓ(𝑥)
of 𝑥 is the minimal number of elements in a chain from ∅ to 𝑥.
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∅

FIGURE 3: HESSE DIAGRAM FOR A 2-DIMENSIONAL HYPERPLANE ARRANGEMENT

1.13 Example. In the above Hesse graph, we can write down the Möbius function via its values at all points:
𝜇(∅) = 1, 𝜇(𝑥) = −1 for all 𝑥 with ℓ(𝑥) = 1, and 𝜇(𝑦) = 1 for 𝜇(𝑦) = 2.

Let 𝑓, 𝑔 ∶ 𝐿(𝒱) × 𝐿(𝒱) → ℤ be functions, then we define their convlution to be

𝑓 ∗ 𝑔(𝑥, 𝑦) = ∑𝑥≤𝑧≤𝑦
𝑓(𝑥, 𝑧)𝑔(𝑧, 𝑦),

then we have the following Möbius inversion formula:
1.14 Proposition ([S+04]). The following two conditions are equivalent for functions 𝑓, 𝑔 ∶ 𝐿(𝒱) → ℝ:

𝑓(𝑥) = ∑𝑦≥𝑥
𝑔(𝑦), for all 𝑥 ∈ 𝐿(𝒱);

𝑔(𝑥) = ∑𝑦≥𝑥
𝜇(𝑥, 𝑦)𝑓(𝑦), for all 𝑥 ∈ 𝐿(𝒱).

1.15 Definition. We define the characteristic polynomial 𝜒𝒱(𝑡) of 𝒱 to be

𝜒𝒱(𝑡) ∶= ∑𝑥
𝜇(𝑥)𝑡dim(𝑥),

where dim 𝑥 is the dimension of 𝑥 viewed as intersection of hyperplanes.
We also have a deletion-restriction formula for characteristic polynomials:

1.16 Proposition. Let 𝐻 ∈ 𝒜 be a hyperplane in the hyperplane arrangement 𝒜, then we have

𝜒𝒜(𝑡) = 𝜒𝒜𝐻 (𝑡) − 𝜒𝒜𝐻 (𝑡).

We will not give a combinatorial proof of this fact. In the subsequent section we will see the characteristic
polynomial is the Poincaré polynomial of some space, and this result follows directly from an exact sequence
of cohomology groups. Note that a hyperplane arrangement gives 𝑉 a cellular decomposition, where the 𝑘-
dimensional cells are exactly connected components of transverse intersections of 𝑘 hyperplanes removing
other transversely-intersecting hyperplanes. Therefore, if we look at the (modified) Euler characteristic of ℝ𝑛,
we will get

(−1)𝑛 = 𝜒(ℝ𝑛) = ∑
𝑥∈𝐿(𝒱)

(−1)dim 𝑥𝑅(𝒱𝑥),

and by Möbius inversion formula, we conclude that

4



1.17 Proposition. (−1)𝑛𝑅(𝒱) = 𝜒𝒱(−1).
A smilar analysis on 𝐵(𝒱) will show that

1.18 Proposition. 𝐵(𝒱) = (−1)rank𝒱𝜒𝒱(1).
Therefore by directly computing the characteristic polynomial, we can obtain the numbers by plugging in

values. For example,
1.19 Proposition ([S+04]). Let 𝒱 be an 𝑛-dimensional hyperplane arrangement of 𝑘 hyperplanes in general
position, then

𝜒𝒱(𝑡) = 𝑡𝑛 − 𝑚𝑡𝑛−1 + (
𝑘
2)𝑡𝑛−2 − ⋯ + (−1)𝑛

(
𝑘
𝑛).

In particular, we have

𝑅(𝒱) = 1 + 𝑘 + (
𝑘
2) + ⋯ + (

𝑘
𝑛) and 𝐵(𝒱) = (−1)𝑛

(1 − 𝑘 + (
𝑘
2) − ⋯ + (−1)𝑛

(
𝑘
𝑛)) = (

𝑘 − 1
𝑛 ).

The computation is an easy corollary of the following Whitney’s theorem:
1.20 Theorem (Whitney). Let 𝒱 be an arrangement in an 𝑛-dimensional vector space, then

𝜒𝒱(𝑡) = ∑
𝒰⊆𝒱

𝒰 is central

(−1)#𝒰𝑡𝑛−rank𝒰.

2. TOPOLOGY
Now we discuss a relevant topology question that involves the combinatorics we have discussed above.

(2a) Motivation. In this section, we work with complex space ℂ𝑑 or the projective space ℂ𝑃 𝑑 . A hyper-
plane arrangement in ℂ𝑑 would consist of a finite collection of complex hyperplanes in ℂ𝑑 , which has complex
codimension 1 and hence the complement

ℂ𝑑 ⧵ ⋃
1≤𝑖≤𝑛

𝐻𝑖

is connected. It makes no sense now to ask whether the complement is connected or not, but we are interested in
the topology of this complement. Write 𝑀(𝒱) to be ℂ𝑑 removing these hyperplanes, and we want to compute
the cohomology ring 𝐻∗(𝑀(𝒱)). A natural idea, as suggested by Arnold, is that the deRham cohomology ring

𝐻∗
𝑑𝑅(𝑀(𝒱)) is actually generated by differential 1-forms

d𝐿𝐻𝑖

𝐿𝐻𝑖

, where 𝐿𝐻𝑖 is the linear form with 𝐻𝑖 as its

zero set. This heuristic shows that the cohomology group of 𝐻∗
𝑑𝑅(𝑀(𝒱)) should have some connection with

the combinatorics of the hyperplane arrangement 𝒱. The work of Orlik and Solomon [OS80] showed that the
cohomology algebra actually comes from the intersection poset: we can associate to the intersection poset 𝐿(𝒱)
an algebra A (𝒱) using purely information from 𝐿(𝒱), and this algebra would then isomorphic to 𝐻∗

𝑑𝑅(𝑀(𝒱)),
and therefore we can read off all cohomological information from the intersection poset.

(2b) Computing Cohomology. In this paragraph we try to prove Arnold’s heuristic, that is, to prove that

the singular cohomology algebra 𝐻∗𝑀(𝒱) is generated by the differential 1-forms d𝐿𝐻
𝐿𝐻

for all 𝐻 ∈ 𝒱. The

proof is a topological translation of deletion-restriction induction: we look at the triple (𝒱, 𝒱𝐻 , 𝒱𝐻 ) where
𝐻 ∈ 𝒱 is some hyperplane. Note that 𝑀(𝒱) ↪ 𝑀(𝒱𝐻 ) ↩ 𝑀(𝒱𝐻 ), and this relation gives
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2.1 Lemma. There exists a short exact sequence of cohomology groups

0 → 𝐻𝑘+1(𝑀(𝒱)) → 𝐻𝑘+1(𝑀(𝒱𝐻 )) → 𝐻𝑘(𝑀(𝒱𝐻 )) → 0.
Proof. For each hyperplane 𝐻 , 𝑀(𝒱𝐻 ) has an open neighbourhood in 𝑀(𝒱𝐻 ) of the form 𝑀(𝒱𝐻 ) × 𝔻, hence
the “deletion” process can be regarded as writing 𝑀(𝒱𝐻 ) as a union

𝑀(𝒱𝐻 ) = 𝑀(𝒱𝐻 ) × 𝔻 ∪ 𝑀(𝒱)
with intersection isomorphic to 𝑀(𝒱𝐻 ) × ℂ∗. Therefore we get a Mayer-Vietoris sequence

⋯ → 𝐻𝑘𝑀(𝒱𝐻 ) → 𝐻𝑘𝑀(𝒱) ⊕ 𝐻𝑘(𝑀(𝒱𝐻 ) × 𝔻) → 𝐻𝑘(𝑀(𝒱𝐻 ) × 𝔻∗) → ⋯
Since 𝑀(𝒱𝐻 ) × 𝔻 ≅ 𝑀(𝒱𝐻 ) and the cohomology group 𝐻𝑘(𝑀(𝒱𝐻 × 𝔻∗)) ≅ 𝐻𝑘(𝑀(𝒱𝐻 )) ⊕ 𝐻𝑘−1(𝑀(𝒱𝐻 ))
as cohomology groups, we get

𝐻∗𝑀(𝒱𝐻 ) → 𝐻∗𝑀(𝒱) ⊕ 𝐻∗𝑀(𝒱𝐻 ) → 𝐻∗𝑀(𝒱𝐻 ) ⊕ 𝐻∗𝑀(𝒱𝐻 )[−1] +1−−→
Note that the second map in this sequence is isomorphism onto 𝐻∗𝑀(𝒱𝐻 ) when restricting to 𝐻∗𝑀(𝒱𝐻 ),
hence we can simply the sequence to be

𝐻∗𝑀(𝒱𝐻 ) → 𝐻∗𝑀(𝒱) → 𝐻∗𝑀(𝒱𝐻 )[−1] +1−−→ .
A careful look at the connecting homomorphismwould tell us this map is zero, and hence we obtain the required
short exact sequence.

Now to show the generation of cohomology algebra, it suffices for us to prove the case in dimension 1, but
in dimension 1 the result follows from a direct computation as in [BT+82]. Therefore we conclude that the
singular cohomology group of 𝑀(𝒱) is generated by those log differentials. Because of this, we also call the
deRham cohomology of 𝑀(𝒱) log cohomology, written as 𝐻∗

𝑙𝑜𝑔𝑀(𝒱).

(2c) Orlik-Solomon algebra. Orlik and Solomon further showed that the log cohomology ring actually
comes from the intersection poset. Let 𝒱 be any complex hyperplane arrangement and let 𝐿(𝒱) be the corre-
sponding intersection poset, then we can associate an algebra B(𝒱) as follows: consider the exterior algebra
ℰ ∶= Ext∗ℤ[𝑥|ℓ(𝑥) = 1] generated by all elements of 𝐿(𝒱) with length 1 and degree 1. For 𝑆 = (𝑎1, ⋯ , 𝑎𝑝) ∈

{1, 2, ⋯ , 𝑛}𝑝, write 𝑒𝑆 for the element
𝑝

⋀
𝑖=1

𝑒𝑎𝑖 , where 𝑒𝑎𝑖 denotes the length 1 element corresponding to the index

𝑎𝑖, then we know ℰ is generated as a vector space by elements 𝑒𝑆 for 𝑆 ∈ {1, 2, ⋯ , 𝑛}𝑝 for all 0 ≤ 𝑝 ≤ 𝑛(with
𝑒∅ = 1). This algebra admits a natural differential 𝜕 ∶ ℰ → ℰ defined by

𝜕𝑒𝑆 =
𝑝

∑
𝑖=1

(−1)𝑖−1𝑒𝑎1 ∧ ⋯ ∧ ̂𝑒𝑎𝑖 ∧ ⋯ ∧ 𝑒𝑎𝑝 ,

where 𝑆 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑝}, with 𝜕1 = 0 and 𝜕𝑒𝑎 = 1 for all 𝑎 ∈ {1, 2, ⋯ , 𝑛}. We can verify that 𝜕2 = 0 and
for two elements 𝑆, 𝑇 we have the Leibnitz law

𝜕(𝑒𝑆 ∧ 𝑒𝑇 ) = (𝜕𝑒𝑆)𝑒𝑇 + (−1)𝑝𝑒𝑆(𝜕𝑒𝑇 )

where 𝑝 = |𝑆|. We say 𝑆 is independent if the maximal element
𝑝

⋁
𝑖=1

𝑒𝑎𝑖 has length 𝑝, and dependent if its

length is less than 𝑝. Let ℐ be the ideal generated by elements of the form 𝜕𝑒𝑆 for 𝑆 dependent, and write
A = ℰ/ℐ to be the quotient algebra of ℰ by the ideal ℐ.
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2.2 Theorem (Orlik-Solomon). The Poincaré polynomial 𝑃A (𝑡) of A is

𝑃A (𝑡) = ∑
𝑥∈𝐿(𝒱)

𝜇(𝑥)(−𝑡)ℓ(𝑥).

Note that it looks almost the same as the characteristic polynomial we defined in the previous section.
Moreover, Orlik and Solomon proved that
2.3 Theorem (Orlik-Solomon). Let 𝒱 be a hyperplane arrangement of 𝑘 complex hyperplanes in a complex
space of dimension 𝑛, then there exists an isomorphism A ≅ 𝐻∗

𝑙𝑜𝑔(𝑀(𝒱); ℤ) by sending 𝑒𝑆 to [𝜔𝑆] for all 𝑆.
In particular, the Poincaré polynomial of 𝑀(𝒱) is given by

𝑃𝑀(𝒱)(𝑡) = ∑
𝑥∈𝐿(𝒱)

𝜇(𝑥)(−𝑡)ℓ(𝑥).

Therefore the cohomology algebra of 𝑀(𝒱) is combinatorial in nature.
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