Oct. $26^{\text {th }}, 2021$
Curve Sketching
\&

Optimization Problem

Mean Value Theorem (10 am)

Problem. Show that equation $x^{4}+4 x^{3}+c=0$ has at most 2 real roots. $f^{\prime \prime}(x)$
which MVT we nee to use 7 Role's the rem,

if $x<-3, x+3<0, x^{2} \geqslant 0.4 x^{2}(x+3)<0$.

$$
x>-3, \quad x+3>0 . \quad x^{2} \geqslant 0 \quad 4 x^{2}(x+3)>0
$$

pick $x_{1}>x_{0}$. Apply MVT.

$$
\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=f^{\prime}(c) \geq 0
$$

$$
f\left(x_{0}\right)<f\left(x_{1}\right)=f(0)
$$

$$
\text { pick } x_{0}=0 \text {, }
$$

$$
f(0)<f\left(x_{1}\right)
$$

$$
f\left(x_{0}\right)
$$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}+12 x^{2} \\
& =4 x^{2}(x+3) \text {. } \\
& f^{\prime}(x)=0 \Leftrightarrow x_{1}=0, x_{2}=-3 . \\
& \begin{cases}\frac{x<-3}{}, f^{\prime}(x)<0 . & \text { w) } f \text { has at most } 1 \text { not in } \\
x>-3, f^{\prime}(x) \geqslant 0 & f^{\prime}(x) .\end{cases} \\
& \Rightarrow f \text { decreasing in }(-\infty,-3) \text {. } \\
& \text { increasing in }[-3,+\infty) \text {. } \\
& \text { w) } f \text { has at most } 1 \text { not in } \\
& (-\alpha,-3)
\end{aligned}
$$

Mean Value Theorem (10 am)

Problem. Show that equation $x^{4}+4 x^{3}+c=0$ has at most 2 real roots.
$\leadsto f$ has at most 2 rots

$$
x^{4}+4 x+c=0 \text {. }
$$

Assume this equation has at least 3 distinct roots. $a_{1}<a_{2}<a_{3}$,
Role's theorem

$$
x^{4}+4 x+c=f(x)
$$

$$
x^{3}+1=0 .
$$

$$
4\left(x^{3}+1\right)=4 x^{3}+4=f^{\prime}(x)
$$

has exactly 1 not $-1 \ldots$ contradiction.

$$
f^{\prime \prime}(x)
$$

Review:

Review:
Question: What things we should determine when we draw a graph?

Review:
Question: What things we should determine when we draw a graph? domain \& range.
asymptotics: horizontal \& vertical.

$$
\lim _{x \rightarrow+\infty} f(x), \& \text { where } \lim _{x \rightarrow a} f(x)= \pm \infty
$$

monotonicity: $f^{\prime}(x)>0$

$$
f^{\prime}(x)<0 .
$$

convexity: $f^{\prime \prime}(x)>0$

$$
f^{\prime \prime}(x)<0 .
$$

special points: critical pts. $\xrightarrow[\sim]{\text { local }}$ maximum \& local minimum. inflection pts.
x - and y-intersects.

Curve Sketch
Problem 2. Sketch the graph of the function $y=x+\frac{1}{x}+1 .=f(x)$. domain: $(-\infty, 0) \cup(0,+\infty)$.
asymptotes: vertical asymptote $@ x=0$. $\quad \lim _{x \rightarrow 0^{-}}\left(x+\frac{1}{x}+1\right)=-\infty$, and $\lim _{x \rightarrow 0+}\left(x+\frac{1}{x}+1\right)=+\infty$. no horizontal asymptote.
monotonicity: decreasing in $(0,1)$ and increasing in $(1,+\infty) . \quad y^{\prime}=1-\frac{1}{x^{2}} . \quad y^{\prime}>0$ or $y^{\prime}<0$. convexity: increasing in $(-\infty,-1)$ and decreasing in $(-1,0)$. $x^{2}-1 \quad \Downarrow, ~ \Downarrow$ critical pis: $x_{1}=-1$ ($\left.(x)>0\right)$. in $(0,+\infty)$ concave $\left(f^{\prime \prime}(x)<0\right)$. in $(-\infty, 0)$. $=\frac{x^{2}-1}{x^{2}}$ inflection p ss: NO \longrightarrow local maximal minim $\quad f(1)=3$. x - and y-intersects: NO.
graph:

$$
y^{\prime \prime}=\frac{2}{x^{3}}
$$

Curve Sketch
Problem 2. Sketch the graph of the function $y=x+\frac{1}{x}+1$.
$a>0$
$b>0$.
$\sqrt{a \cdot b} \leq \frac{a+b}{2} . \quad$ put $a=x$ and $b=\frac{1}{x}$.
$\leadsto \sqrt{x \cdot \frac{1}{x}} \leq \frac{1}{2}\left(x+\frac{1}{x}\right) . \leadsto x+\frac{1}{x} \geqslant 2 \sqrt{1}=2$.

$$
x+\frac{1}{x}+1 \geqslant 3 \text { if } x>0 \text {. }
$$

$x<0: a=-x$ and $b=\frac{-1}{x}$

$$
\begin{aligned}
\sqrt{(-x) \cdot\left(\frac{1}{x}\right)} \leqslant \frac{1}{2}\left(-x-\frac{1}{x}\right) \leadsto & -\left(x+\frac{1}{x}\right) \geqslant 2 . \\
& 1+x+\frac{1}{x} \leqslant-2+1=-1 .
\end{aligned}
$$

when $x<-1$.

Optimization Roblem

Optimization Roblem Applications of things you learn in chapter 3 .

Optimization Roblem Applications of things you learn in chapter 3 .
Problem 3. A farmer has 1600 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the climensions of the field that has the largest area?

Optimization Roblem Applications of things you learn in chapter 3 .
Problem 3. A farmer has 1600 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the climensions of the field that has the largest area?

Reminder:

- Quiz on Thursday. (Ractice Problem: 27 of Section 3.2, 17-18 of Section 3.2, and 4 of Section 2.7)
- Office hours: $1-2 \mathrm{pm}$ TODAY (Other times by appointment)
- See you on Thursday!

