Nov. 11th 2021

Review Before Midtern

Siyang Liu

Today:

• Curve Sketching Problem Again

· Mean Value Theorem Again

• Riemann Sum Again.

Curve Sketching Again given a function y=fix, sketching the graph of f.

Curve Sketching Again given a function y=f(x), sketching the graph of f.

Things to determine: • domain.

- · Critical pts (maximum, minimum), first derivative f(x).
- · second derivative & inflection pts.
- · convexity.
- asymptotes (horizon tally vertical)
- increasing & decreasing_
 mosts (fine-a) ax-inter
- roots (f(x)=0) -+ x-intersect & y-intersect (f(0))

Curve Sketching Again given a function y=fix, sketching the graph of f.

Things to determine: •

•

•

6

•

Actually you don't need to remember all of them.

Example.

Problem 5. Consider the function $f(x) = \frac{\sqrt{4-x^2}}{x+1}$ on the domain $[-2,-1) \cup (-1,2]$. You may freely use any of the following facts.

$$f(x) = \frac{-x - 4}{(x+1)^2 \sqrt{4 - x^2}}$$
i) $f'(x) = \frac{-x - 4}{(x+1)^2 \sqrt{4 - x^2}}$

iii) f(1.38) = 0.6

$$f(x) = \frac{\sqrt{4 - x^2}}{\sqrt{(x + 1)^2} \sqrt{4 - x^2}}$$

$$[-2, -1) \cup \{1, 2\} \quad \text{ii)} \quad f''(x) = \frac{(x + 1.84)(1.38 - x)}{(x + 1)^2}$$

a) Study the sign of f'(x). Determine the intervals where f is increasing, and the intervals where it is decreasing. Indicate the values of the local extrema, if any. You must justify your findings.

$$f(x) = \frac{-x-4}{(x+1)^{3}/4-x^{2}}$$

$$f(x) = 0$$

$$\frac{-x-4}{(x+1)^{3}/4-x^{2}} = 0$$

$$f(x) = 0$$

$$\frac{-x-4}{(x+1)^{3}/4-x^{2}} = 0$$

$$f(x) =$$

$$\begin{array}{c} \text{$\neq 0$} \\ \text{f has NO critical pts in $(-2,-1)U(-1,2)$, but $f'(-2)$ and $f'(2)$ DNE. $(2.8-2)$ are critical pts } \\ \text{$x>-4$, then $-x<4$, $so $-x-4<0$. $|4-x^2| \ge 0$, $|x|+|^2 \ge 0$, $so } \\ \frac{-x-4}{(x+1)^2[4-x^2]} < 0$, that is, f is decreasing in $[-2,-1)U(-1,2]$.} \end{array}$$

$$f(-2) = f(2) = 0$$

b) Study the sign of f''(x). Determine the intervals where f is concave up, and the intervals where it is concave down. List the inflection points, if any. You must justify your findings.

$$f''(x) = \frac{(x+1.84)(1.38-x) k(x)}{x+1} \quad \text{where } k(x) > 0. \quad \text{inflection pt:} \quad f''(c) = 0 \text{ or} \\ f$$

$$f'(N=0) \iff \frac{(X+1.84)(1.38-X)K(X)}{X+1} = 0, \text{ but } K(K) = 0 \text{ & } X+1 \neq 0 \text{ if } f'' \text{ is well-defined, so.}$$

$$(X+1.84)(1.38-X) = 0 \text{ has two pots.} -1.84 \cdot 1.38.$$

$$f''(X) \text{ DNE}: X+1=0, X=-1, \text{ but } -1 \text{ does not lie in the domain of } f. \text{ So } -1 \text{ is NOT the}$$

inflection pt of f.

0c7-88-1

Two inflection pts:
$$-1.84$$
, 1.38 , $f(1.38) = 6.6$, $f(-1.84) = -0.93$.

[-2, -1.84) U (-1.84, -1) U (-1, 1.38) U (1.38, 2].

[owher $-2 \le x < -1.84$, then $x + 1.84 < 0$ $y +$

Two inflection pts: -1-84, 1.38, f(1.38) = 6.6, f(-1.84) = -0.93.

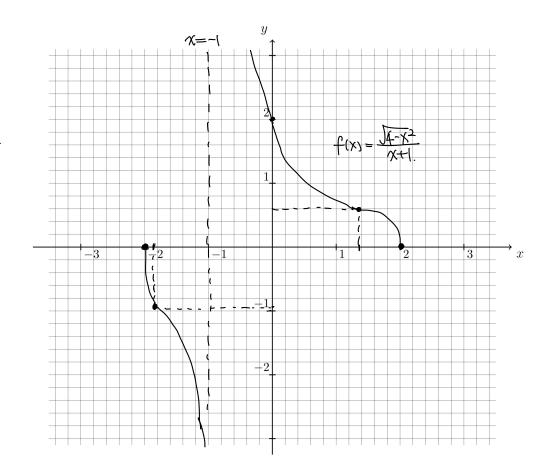
Investigate for the existence of vertical/horizontal asymptotes. Your findings must be supported by the careful calculation of relevant limits. (Each vertical asymptote must be supported by two limits.)

i)
$$f'(x) = \frac{-x - 4}{(x + 1)^2 \sqrt{4 - x^2}}$$
 iii) $f(1.38) = 0.6$
[-2,-1)0(1,2] ii) $f''(x) = \frac{(x + 1.84)(1.38 - x)K(x)}{x + 1}$, where $K(x) > 0$ iv) $f(-1.84) = -0.93$

vertical asymptotes: X+(=0, X=-1) $\lim_{x \to -1^+} \frac{\sqrt{4-x^2}}{x+1} = + \infty \quad \lim_{x \to -1^-} \frac{\sqrt{4-x^2}}{x+1} = -\infty. \qquad \chi = -1 \text{ is a verticel asymptote.}$

$$f(0) = \frac{\sqrt{4-0^2}}{9+1} = \frac{\sqrt{4}}{1} = 2$$

d) Based on all the information gathered in the previous questions, sketch the graph of f as accurately as possible. Include and clearly label all relevant points and asymptotes.



-1.867-2

Mean Value Theorem Again.

Mean Value Theorem Again. Apply mean value theorem to prove inequalities.

Mean Value Theorem Again. Apply mean value theorem to prove inequalities.

Example. Problem 7. One wants to calculate the value of the limit

$$\ell = \lim_{x \to 0^+} \frac{\sqrt[3]{5x + 64} - 4}{\sqrt[5]{x}}.$$

a) Show that
$$\sqrt[3]{5x+64} < 4 + \frac{5}{48}x$$
 for all $x > 0$. You must justify your methods.
$$\frac{f(x+h)-f(x)}{x+h-x} = f'(c) \quad \text{for some} \quad x < c < x+h.$$

$$x+h-x = h.$$

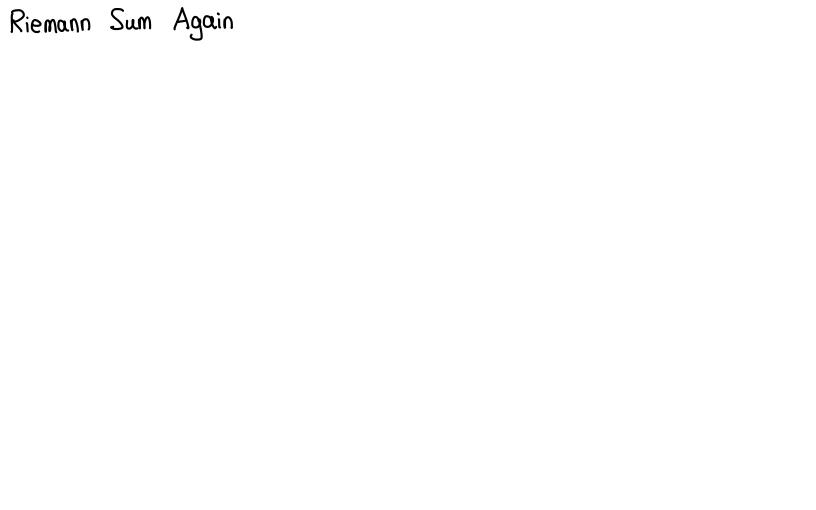
$$f'(x) = \frac{1}{33\sqrt{x}}$$

$$\frac{f(x+h)-f(x)}{x+h-x} = f'(c) \quad \text{for some} \quad x < c < x+h.$$

$$f(x+h)-f(x) = f'(c) \cdot h$$

$$f(x+h)-f(x) = f'(c) \cdot h$$

7 + h - x 7 + h - x = h. 4 = 3 + 64 4 = 3 + 64 5 + 64 - 64 5 + 64 - 64 6 + 64 7 + 64



Riemann Sum Again Write down the definite integral a Riemann sum represent.

Riemann Sum Again Write down the definite integral a Riemann sum represent.

Example.
$$\lim_{n\to\infty} \frac{1}{n} \left(\int |t|^{\frac{1}{n}} + \int |t|^{\frac{2}{n}} + \cdots + \int |t|^{\frac{n}{n}} \right) = \int$$

Reminder:

- · 2nd midterm next week: 2×50 mins
- Contents: Chapter 3 for part I(T)

 Chapter 4 for part I(Th)
- · Classroom: TBD
- · Index card of notes again

•OH: 3-4 today. Appointment accepted

Next Week: Mon 5-6 pm

Wed 3-5 pm