Problem 1. Find the limit $\lim _{t \rightarrow+\infty} \frac{1+\sqrt{t^{3}}}{2+\sqrt{t}+3 t-\sqrt{t^{3}}}$. (10 points)
Solution.

$$
\lim _{t \rightarrow+\infty} \frac{1+\sqrt{t^{3}}}{2+\sqrt{t}+3 t-\sqrt{t^{3}}}=\lim _{t \rightarrow+\infty} \frac{\frac{1}{\sqrt{t^{3}}}+1}{\frac{2}{\sqrt{t^{3}}}+\frac{1}{t}+\frac{3}{\sqrt{t}}-1}=\frac{1}{-1}=-1
$$

Problem 2. Find the tangent line of the graph of the function $f(t)=\frac{1}{(t+3)^{2}}$ at the point $(1, f(1)) .(10$ points)

Solution. We have $f(1)=\frac{1}{(1+3)^{2}}=\frac{1}{4^{2}}=\frac{1}{16}$ and

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{\frac{1}{(4+h)^{2}}-\frac{1}{4^{2}}}{h}=\lim _{h \rightarrow 0} \frac{4^{2}-(4+h)^{2}}{4^{2} h(4+h)^{2}}=\lim _{h \rightarrow 0} \frac{-8 h-h^{2}}{16 h(4+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-8-h}{16(4+h)^{2}}=\frac{-8}{16 \cdot 4^{2}}=-\frac{1}{32}
\end{aligned}
$$

so the equation of the tangent line to $\left(1, \frac{1}{16}\right)$ is

$$
y-\frac{1}{16}=-\frac{1}{32}(x-1)
$$

Final Score: \qquad

Name:

Problem 1. Find the limit $\lim _{t \rightarrow \frac{\pi}{2}+}(x-1) \tan x$.(10 points)
Solution. Note that $\lim _{x \rightarrow \frac{\pi}{2}+}(x-1)=\frac{\pi}{2}-1>0$ is a finite real number, and $\lim _{x \rightarrow \frac{\pi}{2}+} \tan x=-\infty$, so we have $\lim _{x \rightarrow \frac{\pi}{2}+}(x-1) \tan x=-\infty$.

Problem 2. Find the tangent line of the function $f(t)=1+2 t+4 t^{2}$ at the point $(1, f(1))$. (10 points)

Solution. $f(1)=1+2+4=7$, so we want the tangent line of f at the point $(1,7)$. The derivative of f at 1 is

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1+2(1+h)+4(1+h)^{2}-7}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(2 h+8 h+4 h^{2}\right)=10,
$$

so the tangent line of f at $(1,7)$ is $y-7=10(x-1)$, i.e.

$$
y=10 x-3 .
$$

\qquad

