Name: \qquad

Problem 1. Differentiate the function $y=\frac{x^{2}}{2-\sin x}$.
Solution.

$$
\begin{align*}
y^{\prime} & =\left(\frac{x^{2}}{2-\sin x}\right)^{\prime}=\frac{\left(x^{2}\right)^{\prime}(2-\sin x)-(2-\sin x)^{\prime} x^{2}}{(2-\sin x)^{2}}=\frac{2 x(2-\sin x)-x^{2}(-\cos x)}{(2-\sin x)^{2}} \\
& =\frac{x^{2} \cos x+4 x-2 x \sin x}{(2-\sin x)^{2}} .
\end{align*}
$$

Problem 2. Find the limit $\lim _{x \rightarrow+\infty} \cos \frac{1}{x} \sin \frac{1}{x}$ using squeeze theorem.
Solution. We use the inequality $-1 \leq \cos \frac{1}{x} \leq 1$. Multiply both sides by $\sin \frac{1}{x}$ (and because x tends to $+\infty, \sin \frac{1}{x}$ is positive near $+\infty$), we get

$$
-\sin \frac{1}{x} \leq \cos \frac{1}{x} \sin \frac{1}{x} \leq \sin \frac{1}{x} .
$$

Taking the limit as $x \rightarrow+\infty$, we get $\lim _{x \rightarrow+\infty} \sin \frac{1}{x}=\lim _{x \rightarrow+\infty}\left(-\sin \frac{1}{x}\right)=0$, so by the squeeze theorem, we have $\lim _{x \rightarrow+\infty} \cos \frac{1}{x} \sin \frac{1}{x}=0$.
\qquad
\qquad

Problem 1. Differentiate the function $y=\frac{\sin x}{2-x^{2}}$.
Solution.

$$
\begin{aligned}
y^{\prime} & =\left(\frac{\sin x}{2-x^{2}}\right)^{\prime}=\frac{(\sin x)^{\prime}\left(2-x^{2}\right)-(\sin x)\left(2-x^{2}\right)^{\prime}}{\left(2-x^{2}\right)^{2}}=\frac{\left(2-x^{2}\right) \cos x-(-2 x) \sin x}{\left(2-x^{2}\right)^{2}} \\
& =\frac{2 \cos x+2 x \sin x-x^{2} \cos x}{\left(2-x^{2}\right)^{2}}
\end{aligned}
$$

Problem 2. Find the limit $\lim _{x \rightarrow+\infty} \sin x \tan \frac{1}{x}$ using squeeze theorem.
Solution. We have the inequality $-1 \leq \sin x \leq 1$, and because $\tan \frac{1}{x}$ is positive as $x \rightarrow+\infty$, we have

$$
-\tan \frac{1}{x} \leq \sin x \tan \frac{1}{x} \leq \tan \frac{1}{x}
$$

Taking the limit as $x \rightarrow+\infty$, we get that $\lim _{x \rightarrow+\infty}\left(-\tan \frac{1}{x}\right)=\lim _{x \rightarrow+\infty} \tan \frac{1}{x}=0$. Therefore by the squeeze theorem, $\lim _{x \rightarrow+\infty} \sin x \tan \frac{1}{x}=0$.

Final Score: \qquad

