Name: _____ Date: 09/28

 \diamond

Problem 1. Differentiate the function $y = \frac{x^2}{2 - \sin x}$.

Solution.

$$y' = \left(\frac{x^2}{2-\sin x}\right)' = \frac{(x^2)'(2-\sin x) - (2-\sin x)'x^2}{(2-\sin x)^2} = \frac{2x(2-\sin x) - x^2(-\cos x)}{(2-\sin x)^2}$$
$$= \frac{x^2\cos x + 4x - 2x\sin x}{(2-\sin x)^2}.$$

Problem 2. Find the limit $\lim_{x \to +\infty} \cos \frac{1}{x} \sin \frac{1}{x}$ using squeeze theorem.

Solution. We use the inequality $-1 \le \cos \frac{1}{x} \le 1$. Multiply both sides by $\sin \frac{1}{x}$ (and because x tends to $+\infty$, $\sin \frac{1}{x}$ is positive near $+\infty$), we get

$$-\sin\frac{1}{x} \le \cos\frac{1}{x}\sin\frac{1}{x} \le \sin\frac{1}{x}.$$

Taking the limit as $x \to +\infty$, we get $\lim_{x \to +\infty} \sin \frac{1}{x} = \lim_{x \to +\infty} \left(-\sin \frac{1}{x} \right) = 0$, so by the squeeze theorem, we have $\lim_{x \to +\infty} \cos \frac{1}{x} \sin \frac{1}{x} = 0$.

Final Score: _____

Name: _____ Date: 09/28

 \diamond

Problem 1. Differentiate the function $y = \frac{\sin x}{2 - x^2}$.

Solution.

$$y' = \left(\frac{\sin x}{2 - x^2}\right)' = \frac{(\sin x)'(2 - x^2) - (\sin x)(2 - x^2)'}{(2 - x^2)^2} = \frac{(2 - x^2)\cos x - (-2x)\sin x}{(2 - x^2)^2}$$
$$= \frac{2\cos x + 2x\sin x - x^2\cos x}{(2 - x^2)^2}.$$

Problem 2. Find the limit $\lim_{x \to +\infty} \sin x \tan \frac{1}{x}$ using squeeze theorem.

Solution. We have the inequality $-1 \le \sin x \le 1$, and because $\tan \frac{1}{x}$ is positive as $x \to +\infty$, we have

$$-\tan\frac{1}{x} \le \sin x \tan\frac{1}{x} \le \tan\frac{1}{x}.$$

Taking the limit as $x \to +\infty$, we get that $\lim_{x \to +\infty} (-\tan \frac{1}{x}) = \lim_{x \to +\infty} \tan \frac{1}{x} = 0$. Therefore by the squeeze theorem, $\lim_{x \to +\infty} \sin x \tan \frac{1}{x} = 0$.

Final Score: _____