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TALK 1

Introduction

Speaker: Joseph Helfer

The goal of this talk is to say something about the stable homotopy theory, also known as the
homotopy category of spectra Ho(Spectra) = S, Quillen’s results on complex cobordism, and recent
applications in symplectic geometry, which is one of the motivations of this seminar. We start by
looking at the homotopy category of topological spaces Ho(Top) and the derived category D(R) of
a given ring R. Invariants in topology, e.g. homology and homotopy groups, are functors on Top
which passes fo the corresponding homotopy category Ho(Top). D(R) is the homotopy category of
the category of chain complexes of R-modules Ch(R). The homotopy category of spectra is in some
sense a category lying between the above two known examples.

The category of spectra is, roughly speaking, something kind of like both Top and Ch(R). The
object of S are “stable spaces”, ie. Z®X where Z is the suspension operation. On the other hand,
the objects of S are “generalized cohomology theories”. We can use geometric constructions and
categorical constructions to produce inferesting conomology theories. Complex cobordism is one
kind of such generalized cohomology theory.

(1a) Stabilization Let X be a topological space. The suspension SX of X is the space (X X
[0,1]/X x {0})/X x {1}.

X

Figure 1.1: suspension

LEt (X, xy) be a pointed space. The reduced suspension X of X is the space X = SX/{x} X L.
1.1 Example. SS" ~ S"*1 = §" ~ §"S0.

If (X, x,) is well-poinfed (e.g. x, is a vertex in a CW complex X, or X is a manifold), then SX — X
is a homotopy equivalence. (See [Hat00, Chapter 0] for a proof) In fact, ZS" ~ S"*! so ="S? ~ S".
There're some advantages of reduced suspension:

1



2 CHAPTER 1. INTRODUCTION

X

Figure 1.2: reduced suspension

- X = S} AX, where A is the smash product, i.e. for pointed spaces Y and Z, the smash product
YAZisdefinedtobe YAZ :=Y X Z/{yo} X ZUY X {zy}.

- Smash product is associative, so that 22X ~ SIA(S'AX) = (STASHAX =S2AX, soin
general, "X = S" A X.

- There's an adjunction
Map,. (X, Map,(Y,Z)) ~ Map (X A Y, Z),
hence Map,.(2X,Y) ~ Map, (X, QY) where QY == Map, (S}, Y).

(1b) Properties of Reduced Suspension
1.2 Theorem. H,(X;G) = H,,,(ZX;G) and H(X; G) = H"*}(ZX; G)

Proof Write SX as CS Ux CX, then use Mayer-Vietoris. ]

1.3 Theorem (Freudenthal Suspension Theorem). 7,(X) = 7,,1(ZX) for n large enough.

The isomorphism comes from the following: 7,(X) = [S", X] = [ZS", 2X] ~ [S"*,2X]. ie. the
sequence of groups
Tp(X) = 71 (ZX) = 7Tn+2(22X) > e

stabilizes. For a proof see [Hat00, Section 4.2]. More generally, for any finite CW complex Y,
[ZKY, 2kX] stabilizes.
This is the first stable phenomena, and now we'll define

1.4 Definition. The nth stable homotopy group is given by 75,(X) := colimy 7, (Z¥X).

1.5 Remark. 7,(S™) are notoriously difficult to compute, but 3, := 75(S°) is somewhat easier, and
much of stable homotopy theory is dedicated fo this.

The “stabilized spaces” “Z*X" should have well-defined H,, H*, 5.
1.6 Definition. The S-category has

- Objects finite CW complexes;
- Hom(X,Y) := colim,[Z"X,Z"Y].

This is a first approximation to the homotopy category

1.7 Remark. 1) This category is additive. For any X,Y, [EX,Y] ~ [X,QY] is a group (for the same
reason m,(Y) is), and if we suspend twice, then [£2X,Y] ~ [X,Q%Y] is an abelian group (as m,(Y)
is, also [ZkX,zkY] — [Zkt1X, k1Y) is @ homomorphism). Hence Hom(X,Y) is an abelian group
and Hom(X,Y) x Hom(Y, Z) is bilinear.
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2) Also, it's graded: we have groups
Hom(X,Y), := Hom(Z"X,Y)
st Hom(X,Y) = Hom(X,Y), and Hom.(X,Y)®@Hom.(Y,Z) - Hom(X, Z) is a graded morphism.

3) The original motivation of introducing this category, due to Spanier and Whitehead, is a notion of
“duality”: objects in the S-category have a “dual” DX. This recovers the Alexander duality theorem
Hi(S*\ K) = A" %K) for "good” compact K C S"([SW55]) and the Poincaré duality([Ati61]).

If we define a “stable object” X to be a sequence of pointed spaces X,, € Top, with maps
2X, = X,41. We can define
TA(X) £ = colim 7, (X,

where 7,(X,) = [S", X,] = [S"H, X1 ] AN [S"*1,X;] — ---. This recovers 73,(X) by taking

X =I°X = {X,2X,2%X, ---}

. Sn=id
with 2X,, —— X141

(1c) Cohomology Theories Recall the Eilenberg-Steerod axioms for (reduced) cohomology the-
ory: A cohomology theory is a sequence of contravariant functors (h,, : Top, — Ab,a,) such that

- (homotopy invariance) h,, is invariant under homotopy equivalence, ie. it defines a functor
hy, : Ho (Top,) — Ab;

- (suspension isomorphism) h,,(=) = Ry (Z-);
(o4

n

- For a CW-pair (X, A), h,,(A) - h,(X) - h,(X/A) is exact;

. (additivity) hn(\/Xi) = T raCX0):

iel iel
- (dimension axiom) h,(pt) =~ 0 for all n # 0 and hy(pt) ~ G for some abelian group G.

1.8 Theorem. Any (h,,a,) satisfying these axioms is isomorphic fo H*(—, G).

1.9 Definition. A generalized(extraordinary) cohomology theory is a datum (h,,, «,) as above, satis-
fying everything except the dimension axiom.

There are corresponding axioms for homology, and definition of generalized homology theory.

110 Example. . The first one to be discovered is complex K-theory: K°(X) := {complex vector
bundles E — X}/ ~ with @ as addition and ® as multiplication.

K=2(X) = K°(Z2X) ~ K°(X) by Bott periodicity theorem, which means K=2"(X) ~ K°(X), so
now we can define K**(X) ~ K°(X), and K*"~1(X) := K*"(ZX) = K°(ZX).

1.11 Theorem. This is a generalized cohomology theory.

- Given a space X, we define the bordism group of X, Qi (X), fo be {M — X|M a k-manifold}/cobordism
with [] as addition. Here's a picture depicting this:

1.12 Theorem. This is a generalized homology theory.

There's a corresponding cohomology theory as well
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Figure 1.3: cobordism

- Actually we have several different versions of bordism theorem. The above is unoriented cobor-
dism, and we also have oriented bordism, framed bordism, and complex bordism. Each of them
corresponds to different groups. The unoriented cobordism corresponds to the orthogonal
group O, oriented bordism corresponds to SO, and complex bordism corresponds to U.

- There're lots of other generalized cohomology theories..
1.13 Theorem (Brown representability theorem). For any cohomology theory {h"}, there's a sequence
of spaces {E, } such that
h" ~ [—,E,]| = HomHo(Top*(—,En): Ho(Top,) — Ab.

Observation: The suspension isomorphism h™(=) — h"*}(2-) gives an isomorphism [—, E,] —
[Z—,E 1] = [—, QE,], hence by Yoneda lemma, we have homotopy equivalences E,, 5 QE, ,,.(So
Ey, ~ Q"E,). Hence

2E, = Eniq

and we have a Q-spectrum {E;};, which is exactly the data we need to form a stable object. Actually,
every spectrum arises this way.

1.14 Example. For ordinary cohomology H*(—,G), the space E, is called K(G,n), the Eilenberg-
MacLane space, which has the special property that

G, ifk=mn;

m(K(G,n)) ~ [S¥,K(G,n)] = H*(S*;G) ~ { 0, otherwise.

Note: the Eilenberg-MacLane spectrum HG = {K(G, n)},, satisfies

G, ifn=0;

S —
Tn(HG) = { 0, otherwise.

Hence HG acfts like a discrete space.

(1d) Constructing the category. The objects of Ho(Spectra) are spectra or stable objects as
above, and what about the morphisms? Note that for Ho(Top) and D(R) there're two approaches:

1) Take nice objects (CW complexes or projective/injective complexes) and homotopy classes of maps
between them. Recall from Whitehead theorem(see Hatcher) that all topological spaces are weakly
equivalent to CW complexes.

2) Take all objects and invert weak equivalences/quasi-isomorphisms. From Whitehead's theorem we
can see that these two approaches produce the same homotopy category.

1) F. Adams takes the first approach to contruct this category, in which the notion of map is very
complicated. See [Ada74].
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2) A more modern approach, as in [BR20], is the second one: X — Y is a weak equivalence
if m5,(X) — 73(Y) is an isomorphism for all n. In this case we only need to invert the weak
equivalences defined above. But the problem is we heed to get some kind of handle on the result
of inverting weak equivalences(localization), which leads o the notion of model categories. (There's
another approach to the construction, using infinity categories.)

Since this categoryis complicated, B-R give "axioms”: starting with a category S,
« X% Ho(Top) — S;

- Hom sefs in S are graded abelian groups;

- Each cohomology theory is represented by an object in S;

. efc.

(1e) More about stable homotopy. Given an additive and graded category S, for any E € S, we
have a functor

Ho(Top,) — AbZ

which is a cohomology theory (We can check Eilenberg-Steenrod axioms) and a homology theory:
T(Z®° — AE): Ho(Top,) — Ab%. This satisfies the E-S axiom for homology again. Finally, there's
an operation called "smash product” A: S xS — S generalizing A on topological spaces. (It is to
spectra what @ is to abelian groups.) S :=X*®S? is to spectra what Z to abelian groups.

1.15 Definition. A ring spectrum is a spectrum E with a morphism E A E — E in S satisfying unit,
associativity(commutativity if we want commutative ring specra).

(1f) A bit more on model categories

Localization. Let W C C be categories. The localization means a category C[W 1] with the
universal property that

C — (w1
F |

4

D

If F sends morphisms in W to isomorphisms in D.

Different models for the same homotopy theory. We can have different models for the same ho-
motopy theory, for example, topological category and the category of simplicial sets. We say two
categories are "Quillen equivalent” if they give the same homotopy theory. The sequential spectra,
symmetric and orthogonal spectra we're going fo talk about this semester are all Quillen equivalent.

Cohomology theories. Given E € S, we can define E*(X) := [Z*X,X]_,. For X a CW complex
this defines a cohomology theory. In general, given X € S, E*X := [X,E]_,.

Homology Theories Given E € S, we define the generalized homology theory E.(X) := [S =
T®S% X AE], = m.(X AE). If X is a space, then we just let E,(X) = E,(Z®X).
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ZOO
Closed Model Structure. Smash product on Top extends fo a smash product Ho(Top) — S to

a monoidal sfructure S A'S A S with unit S: SAE ~ E. For given X,Y € S, we have a mapping
spectrum Map(X,Y) € Sand [XAY,Z] ~ [X,Map(Y, Z)].

Ring Spectra and Module Spectra. From the discussions above we know that S behaves in some
sense similar to the category of abelian groups: tensor product of abelian groups correspond fo smash
products, Homy, corresponds to mapping spectra, and S has a unit which is the sphere spectrum S.

1.16 Definition. A ring spectrum is an object R € S with maps RAR — R and § 5 R such that the
commutative diagrams in the homotopy category describing the associativity and units are satisfied.

One can also demand sfronger associativity and commutativity conditions rather than “up to
homotopy”. For example, “Ay", “Es", and “highly-structured ring spectra”.

1.17 Definition. If R is a ring spectrum, then a module spectrum M is a spectrum with a map
R AM — M with the condition similar to that of a module.

Note that any spectra is naturally a S-module.

(1g) Thom Space Let V — X be a vector bundle over a topological space X, and assume V
admits a horm, then we can construct the associated disk bundle D(V) of all vectors with norm <1
and the sphere bundle S(V) of all vectors with norm 1.

1.18 Definition. The Thom space is the quotient space Th(V) := D(V)/S(V).

Another way to describe is that the Thom space is the one-point compatification of each fibre
and identify all the oos.

Note: If V ~ R", then Th(V) ~ Z"X.

There're very special Thom spaces, for example, BO,,, which completely classifies real vector
bundles up fo isomorphism, i.e. given any real vector bundle V — X, there is a unique up to
homotopy map X — BO,, and the universal vector bundle y,, — BO,, such that we have a map of
bundles ®: V — y, over X — BO,, with the pull-back diagram

V#Vn

L

X — BO,

The same for BSO,, which classifies oriented bundles, and BU,, which classifies complex vector
bundles.

MSO,, is the Thom space Th(y,, = BSO,,). and similarly MU, is the Thom space Th(y,, — BU,).
MSO is a spectra, called a Thom spectra. First of all,

VWO R — ¥
MSO = {MSO;,MSO,, - ,} l l = IMSO,, ~ Th(y, ® R) = MSO,.,1,

BSO,, —— BSO,
and MU is similar, with a little twist that

MU = {MU,,SMU,, MU,, SMU,, --- }
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(1h) Bordism and Cobordism Given X C M, we have the Pontrjagin-Thom construction: there is
a map X — BO,, which classifies the bundle Ny, X — X, this map Ny X — y,, of vector bundles then
induces a map of Thom spaces Th(NyX) - MO,,, but we then have the “collapse map” M — Th(NpX)
by collapsing the complement of Ny, X to a point. So a codimension n submanifold is in one-fo-one
correspondence to maps from M to MO,,, and two submanifolds X and X’ are cobordant if and only
if the two maps from M to MO,, are stably homotopic, i.e.

{submanifolds of M}/cobordism ~ colim[M, MO,,].
n

The outcome of this construction is that the homology theory represented by the spectra MO is the
bordism: MO,(X) ~ Q,(X), and similarly, MO*(X) is called cobordism. If X is a manifold, then it's a
duality, meaning that the bordism and cobordism groups are isomorphic. Similarly, MSO, and MSO*
are oriented bordisms and cobordisms.

MU, and MU* are complex bordisms and cobordisms.

Observe that 7, (MO) ~ MO, (pt) ~ Q,, which is the “cobordism ring".

(1i) MU and complex orientations Suppose we have a vector bundle V — X, then H*(Th(V)) —
H*(Th(V;)) ~ S™. Then there's a theorem of Thom saying that there is a “Thom class” u € H*(Th(V))
which goes fo £1 € H*(S"). The orientation is the same as the existence of such a Thom class.

1.19 Definition. E € S is complex oriented if for each X € Top and V — X complex vector bundle,
there exists a class u € H**(Th(v)) = E*(Th(V)). (HZ, K and MU are complex oriented)

Fact: MU is the universal complex oriented cobordism theory: if E is complex oriented theory,
then there exists a map MU — E inducing that complex orientation.

(1j) Formal Group Laws. If E is complex oriented, we can see by a spectral sequence argument
that E*(CP*®) =~ E,[[t]], where E, = 7.(E). Moreover, E*(CP*® X CP*®) ~ E,[[u,v]]. We can then find
a universal class f(u,v), which is a formal group over E,, which means that it satisfies the following
conditions:

¢ f(a’ 0) = f(Os Cl),'
- f(f(a,b),c) = f(a, f(b,c))(inverses are free);

Fact 2: 7, (MU) is the “Lazard ring”.
There're two interesting theories, the Brown-Peterson and Morava K-theory, which is obtained
from MU. Finally, there's a theorem by Abouzaid-McLean-Smith:

1.20 Theorem. Assume Y is a projective variety, Y — CP! holomorphic submersion with fiber X, then
H*(Y;Z) = H*(X;2) ® H*(S?; 2).

This theorem was know over Q, and the statement involves nothing about homotopy theory. The
proof is to first replace Z by any complex oriented cohomology theory. To do this, they first prove this
for MU, and then for BP, and finally for all “K(n)-local” cohomology theories. The reason why these
all have to do with symplectic geometry is that the Morava K-theory are well-behaved with respect
to orbifolds. In symplectic geometry, we have the moduli space of pseudo-holomorphic curves which
are orbifolds.






TALK 2

Basics of Model Categories

Speaker: Suraj Yadav

The notion of model category allows us to do abstract homotopy theory.

2.1 Definition. A model category is a category C with three classes of morphisms W, the class of weak
equivalences, €, the class of cofibrations, and F, the class of fibrations, with the following properties:

1) C is closed under finite limits and colimits;

2) (2 out of 3) given three objects X,Y,Z and a commutative diagram
—

if any two morphisms are in W, then so is the third.

X

b

N

3) (retracts) The retract of any morphismin W, € or F is again in W, € or F respectively. Here we

say a morphism X L Y is a retract of U — V if there exists a commutative diagram

X s U S X
N B
Y s v S Y

so that the composition of the upper and lower rows are identities.

4) (lifting property) Suppose we have a commutative diagram

A— X
\Lfﬁ/x lg

B—Y
such that

a) fEWnNC, geF implies there exists a lifting H: B - X;
b) If f € C, g € W N F, then there exists a lifting H: B - X;

9
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5) (factorization) For any morphism f: X — Y, there are factorizations

X f1>Z f2>Y

1 2
x Iz sy

of f,where e WnNC f,beF, fleCand f2PeFnW.

2.2 Definition. Let C be a model category. An object X € C is fibrant if X — = is a fibration; Y € C
is cofibrant if f: % — Y is a cofibration.

For any object X € C, we have a unique morphism @ — X which facftors through a cofibrant
object Y such that Y — X is the trivial fibration. (Here we say a fibration is trivial if it's both a fibration
and a weak equivalence.) We want to get a cofibrant and fibrant object Z which is weakly equivalent
to X, so we consider the morphism Y — %, and consider the factorization Y - Z — % where Y — Z
is the trivial cofibration and Z — = is a fibration, so Z is both cofibrant and fibrant. Now we want to
show that Z is weakly equivalent to X.

2.3 Example. For the category of fopological spaces, we have two kinds of model structures. One of
them is called the Serre model structure, where we make weak equivalences fo be weak homotopy
equivalences, fibrations to be Serre fibrations, ie. we have the lifting property for all maps A —
A X [0,1] where A is a CW complex

Another structure is the Hurewicz moel structure, weak equivalences are homotopy equivalences,
and fibrations have lifting properties with respect to maps A - A X [0, 1] where A is any topological
space.

2.4 Example. The category of simplicial sets also admits a model structure. Let /\ be the cosimplex
category whose objects are [n] = {0,1,--- ,n} the set of natural numbers, and morphisms order-
preserving maps [n] — [m]. We have a class of special morphisms d': [n] — [n + 1] defined by
di(k)=kifk <i andd'(k)=k+1ifk>i and s’ : [n+1] = [n] given by si(k) = k for k < j and
sk(ky=k—1fork>j

2.5 Definition. A simplicial set X is a funcfor
X: AOP — Set.

This means that a simplicial set is a dafta [n] » X, with maps x,,; — X,, = X,_; with the
given compatibility conditions. Simplicial sets are combinatorial data of topological spaces. Simplicial
sets are representable functors with representation A" := Hom(—, [n]). Let sSet be the category of
simplicial sets, then we have a geometric realization functor

| —|: sSet — Top

which is adjoint fo the singular functor Sing, : Top — sSet. For the standard n-simplex A", |A"| is
just the standard n-simplex {(xq, --- , x,) € R""|Zx; = 1, x; > 0}.

For any fopoogical space Y, we define (Sing,Y), = HomTop(|An|, Y) and we can check that this
actually defines a simplicial set. Although these two categorys sSet and Top are not equivalent, their
homotopy categories are equivalent.

The model structure on sSet is given as follows: X — Y is a weak equivalence of simplicial sets if
|X| — |Y] is a weak homotopy equivalence of fopological spaces, X — Y is a cofibration if X;, = Y,
is @ monomorphism for any n, and X — Y is a fibration if it has lifting property with respect to all
cofibrations.
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2.6 Example. For any ring R, the category of chain complexes Ch(R) is the category with objects
chain complexes -+ — C, —» C; — C, — 0. This category admits natural model structures: a
morphism f.: C, — D, is a weak equivalence if the induced map on homology f,.: H,C — H,D
is an isomorphism. f. is a cofibration if f,: C, — D, is injective with projective cokernel. f, is a
fibration if f, . C, - D, is surjective. This is the projective model structure on Ch(R), since the
cofibrant objects in this structure are chain complexes of prgjective modules, and the cofibrant
replacement is just the same as taking projective resolutions.

Another model structure is the so-called injective model structure, where fibrations are degreewise
surjective maps with injective kernels and cofibrations degreewise injective maps. Similarly, fibrant
replacements in this category are injective resolutions.

Now we proceed to define homotopy category of a model category.
2.7 Definition. Consider the commutative diagram

x* — X

o

X — XuX
id
The identity map X 5 X gives a natural map t7: XUX — X. A cylindrical object is the following data

C Wg
XUX S Cyl(X) — X

where C is a cofibration and W g is the trivial fibration.
The motivation of this cylinder object is the usual cylinder A x [0,1] for a given fopological space
A

2.8 Lemma. Suppose we have a map X L Y which is a weak equivalence, then we have a natural
induced map Cyl(X) — Cyl(Y) which is also a weak equivalence fitting info the commutative diagram

XuXA——>YuY—£gYuY

— W
oo s x L sy

2.9 Definition. Two morphisms f,g: X — Y are left homotopic if there exists a morphism H : Cyl(X) —
Y such that Hyip = f and Hi; = g Here (ig,i;) : X UX — Cyl(X) are the two inclusion maps of X
into Cyl(X).

The problem is, in a general model category, the notion of homotopy equivalence is not an
equivalence relation. Now we give a dual construction.

A
2.10 Definition. Taking any object Y € C, the path object of Y is the factorization of Y - Y X Y

4 )
vy 28 py Lo v oy

where Y — PY is the frivial cofibration and PY — Y X Y is the fibration.
2.11 Definition. f,g: X — Y are right homotopic if there exists a morphism H : X — PY such that
eoH=fand etH =g

Now we can define the homotopy category of a given model category C. Given X,Y € C, we
consider the cofibrant-fibrant replacement of both X and Y, ie. X</ and Y/, and consider the set
of morphisms Homc (X, Y¢/). We use the following fact:
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(a) If X is cofibrant, then left homotopy is an equivalence relation on C(X,Y);
(b) If Y is fibrant, then right homotopy is an equivalence relation on C(X,Y);

(c) If X is cofibrant and Y is fibrant, then f,g: X — Y are left homotopic if and only if they are
right homotopic.

Therefore we can define the homotopy category Ho(C) of C fo be the category with objects those
objects in C and morphism sets Homc(X¢, Y/)/ ~ where f ~ g if and only if they are left or right
homotopic.

In this homotopy category, we know that if f: X — Yis a weak equivalence with X, Y cofibrant-
fibrant, then f is a homotopy equivalence.

212 Lemma. f: X — Y is an isomorphism in Ho(C) if and only if f is a weak equivalence in C.

Therefore the notion of "localization at W” in C is the same as the homotopy category of C.
Finally, we define the Quillen functors:

2.13 Definition. F: C — D is called left Quillen if it preserves cofibrations and trivial cofibrations, and
right Quillen if it preserves fibrations and trivial fibrations.

2.14 Definition. F: C 2 D: G a pair of functors. We say they are Quillen adjunction if they are
adjunctions and one of the following conditions hold:

1) F and G have to be left Quillen and right Quillen respectively;

2) Fis left Quillen;

3) G is right Quillen;

4) F preserves trivial cofibrations and cofibrations between cofibrant objects.

5) G preserves trivial fibrations and fibrations between fibrant objects.

2.15 Example. | —|: sSets 2 Top, : Sing, are Quillen adjunct.

2.16 Definition. Let F: C — D be a left Quillen functor, then LF: Ho(C) — Ho(D) is given by
LF(X) := F(X°). Similarly, if G: D - C is right Quillen, then we can define RF : Ho(D) — Ho(C) by
RG(X) := G(X7).

2.17 Example. The sheaf cohomology H*(X, —) is the example of RG for G the global section functor.
So LF and RF are generalizations of left and right derived functors in the model category.

2.18 Definition. A Quillen adjunction

is a Quillen equivalence if
LF : Ho(C) 2 Ho(D) :RG

is an equivalence of categories.

For example, the projective and injective model structures on Ch(R) are Quillen equivalent.



TALK 3

Basics of Homotopy Theory

Tianle Liu

Today we'll falk about basics of homotopy theory, following the last talk about model category.

(3a) Cofibrations and Fibrations. We have introduced cofibrations and fibrations in a general
model category, and now let's see how they're defined in the category of topological spaces.

3.1 Definition. i: A — X is a cofibration if it satisfies homotopy extension property: for any continuous
maps f: X = Y and h: A X I making the diagram commutative,

ip

BN
~
BN
X

~

there exists a map X X I — Y filling in the commutative diagram.

With the notion of mapping cylinder, we can make things simpler:

A—S AXI

Lol

X — Mi

Here Mi is the mapping cylinder of i.
Dually we have the notion of fibration:

3.2 Definition. A surjective map p: E — B is called a fibration if it satisfies the covering lifting
property:
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With the notion of path space, it's equivalent to
E <
Y

B ¢ B!

EI

where B! = Maps(I, B). With the notion of path object Np of p(the pull-back), we have

E < Ef
\ R
7
Ve
p Np
B < B!

These are the Hurewicz fibrations and cofibrations as mentioned last week.

Recall from last week that any map can be decomposed into a composition of a weak equivalence
followed by a cofibration or a fibration followed by a weak equivalence. Now we make this decom-
position precise in the fopological category. Given f: X — Y, we can facfor f via the mapping
cylinder

cof ~
X—Mf->Y,

where Mf — Y is a weak homotopy equivalence. Dually, we can decompose f as

~ fib
X—=Nf—-Y.

(3b) Suspension and Loop Construction. Consider the category of pointed topological spaces
Top,, i.e. we choose a base point for each fopological space X, and we take the homotopy pull-back
of the diagram

QX —

(N

¥ — X
To see why this is the usual loop object, notice that this is the homotopy pull-back, so we can replace
maps by the fibrant or cofibrant objects. For example, we can replace « — X by the path fibration

PX — X, then we get
k

i.
PX —3 X

The suspension is given by the homotopy pushout of the diagram

X — %

l

*

and we can replace both * by the mapping cylinder Mi, then the pushout is exactly the suspension
>X.
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(3c) Fiber and Cofiber Sequences.
3.3 Definition. We say a sequence Z — X — Y is a fiber sequence if the diagram

Z — X
* — Y
is a homotopy pullback. In this case, we say Z = fib(f) is the fiber of f.
If we look at the pull-back square

Qy — 3 %

Lol
Fib(f) — X
L
* — Y

then the top left corner should be the loop space of Y. If we repeat this procedure, we would get the
loop space QX. Repeated this process, we would get a long exact sequence

Q%Y — QFib(f) » QX - QY — Fib(f) - X - Y.

in the sense that each consecutive three arrows are fiber sequences. Similarly, we can get the cofiber
sequence X — Y — cob(f) if the diagram

x L sy

11

% — cob(f)

is a homotopy pushout square. With the similar construction, we get a long exact sequence
X —->Y - cob(f) » ZX - XY — Zcob(f) - --

Write (—, —) for the homotopy mapping space(i.e. the mapping space modulo homotopy), and given
any topological space Z, we get a sequence of spaces

v = {Z,Q%2X) = (Z,Q0%Y) = (Z,Qfib(f)) = (Z,QX) — ---
3.4 Definition. For any space X, define m,(X) = [S°, X] the space of connected components of X.
If we apply 7y to the sequence above, we get long exact sequence of sefs

= (Z, QX)) = mo(Z, QYY) = 7o Z, Qfib(f)) = mo(Z, QX) — ---

and similarly for (—, Z).
3.5 Definition. We define the n-th homotopy group of X fo be 7,(X) = 7y(Q"X).

So we know that 7r1(X) = [S?, QX] = [£S°, X] = [S!, X] using the isomorphism [ZX, Y] = [X, QY],
then m,(X) = [S?, Q2X] = [ZS°, QX] is abelian, so we get 1(X) is a group and 7, (X) is an abelian
group for n > 2.

Now in the sequence above, if we choose Z = S°, then we have an exact sequence

- = [S%,QY] = m(Y) = [S°, QX] = m1(X) = 7o(fib(F)) = 7o(X) = 7(Y)

of homotopy groups, with f : X — Y a fibration. This is the usual long exact sequence of a homotopy
group under the condition that f: X — Y is a fibration.
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(3d) CW Complexes. The first theorem here is the CW approximation:

3.6 Definition. f: X — Y is a weak homotopy equivalence if 77;(f) : 7;(X) — m;(Y) is an isomorphism
of homotopy groups.

3.7 Theorem (CW Approximation). For any topological space X, there exists a CW complex Y and a
morphism X — Y such that f is a weak equivalence.

Recall from last time that we have a Quillen equivalence | —|: sSets 2 Top, : Sing,, which tells
us that for each topological space X, the counit map |Sing(X)| — X is a weak equivalence w.rt. Serre
model structure, and is hence a weak homotopy equivalence.

Another thing about CW approximation is the cellular approximation theorem.

3.8 Definition. Let f: X — Y be a map between two CW complexes, then we say f is cellular if
fX™) C Y™, ie. the image of the n-skelefon of X is contained in the n-skeleton of Y.

3.9 Theorem (Cellular Approximation Theorem). Any continuous map f : X — Y between topological
spaces X and Y is homotopic fo a cellular map.

The last theorem here is Whitehead's theorem, which says that

3.10 Theorem (Whitehead Theorem). Let X,Y be CW complexes, and f: X — Y a weak homotopy
equivalence, then f is a homotopy equivalence.

Proof. Again we consider the Quillen model category Topg .- Note that in this model structure, all
the CW complexes are fibrant and cofibrant. There's a theorem stated last time that weak equivalences
between fibrant and cofibrant objects are actually homotopy equivalences. O]

(3e) Freudenthal Suspension Theorem Now we state a theorem which is important in stable
homotopy theory. The idea is that we want tfo study the suspension map

T [X,Y] = [ZX,ZY],

and because of the adjunction between suspensions and loops, we have [ZX,ZY] = [X, QXY], so we
only need to study the map X — QXX induced from the identity map. Note that QXX is a topological
group up to homotopy, and we can actually make it info a real topological monoid called Moore
space, and if we take the free monoid J(X) generated by X, and take the map J(X) - QXX,(J(X) is
called the James construction. Explicitly, we take J,,(X) to be the n-th Cartesian product X™ quotient
by the relations (X1, , Xk—1,€ Xks ==+ » Xm—1) ~ (X1, +* s Xk—1,Xk> *** » Xm—1). FOr more information
about the James construction, see [Hat0O0, Section 4.J].

3.11 Theorem. J(X) ~ QXX.

Now the problem reduces to considering the natural mapping space [X,J(X)]. If X is (n — 1)-
connected CW complex(by CW approximation, it always suffices fo consider CW complexes), i.e.
7;(X) =0 fori < n—1, then we can regard X1 1o be a point homotopically, then we can intuitively
imagine that J(X) \ X has cells of dimension at least 2n, and we can conclude by this argument that
X — J(X) is (2n—1)-connected. This means that X — QXX is (2n—1)-connected, so if dimY < 2n—1,
then [Y,X] N [Y,QZX] = [ZY,ZX] and if dimY = 2n — 1, then [Y,X] » [ZY,ZX], which can be
proved via long exact sequence and cellular approximations. That is, for dimY < 2n — 1, the map is
injective by fiber sequence, and for dimY < 2n — 1, the map is surjective by cellular approximation.
Let's conclude the Freudenthal suspension theorem:

3.12 Theorem (Freudenthal). Let X,Y be topological spaces with X

(3f) Hurewicz Theorem Finally we talk about Hurewicz theorem. Firstly we give an alternative
definition of homology theory: for any topological space X, we define H,(X) = m,,(sp(X)), where

sp(X) = Ii_r)nX"/on
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where g,, ~ X™ acts by permutation. Then we get a natural map f: X — sp(X) which gives a map

7o (f) : n(X) = 7,(sp(X)) = Hy(X).

3.13 Theorem (Hurewicz). If X is (n — 1)-connected, then the map X — sp(X) is (n + 1)-connected.
As a Corollary, we have
3.14 Corollary. m;(X) — H;(X) is an isomorphism if i = n, and is surjective if i = n + 1.

(3g) Cohomology. Finally, we just quickly review the construction of cohomology theory. Similar
to homology theory, we can compute our cohomology group H"(X; G) via homotopy groups

H"(X;G) = [X,K(G,n)],

where K(G, n) is the Eilenberg-MacLane space. Then we say the functor H"(—; G) is representable
with representation K(G, n). Actually we have a summary of this phenomena:

3.15 Theorem (Brown Representability). A functor F: Ho(Top,)°P — Sets, is representable if and
only if F is a Brown functor, i.e.

1) Tt takes coproducts to products;
2) It takes homotopy pushouts to weak pullbacks(we don't need the uniqueness for the pull-back).

One example is the cohomology functor, and another example is the functor
Bung(X) = {G — bundles on X}/ ~, and it's represented by some BG € Ho(Top), which is called the
classifying space of G.

A final thing is that if F happens to be a cohomological functor, i.e. it satisfies the cohomological
axiom, then what space it should represent? Let E™ be the cohomological functor and L' the spaces
they represented, then we have E"(X) = [X,L"] and E"*}(ZX) = E"(X) = [ZX, '] = [X, QL]
so we should have L ~ QI"*!. Now it goes into the notion of spectrum. We call {I"*} an Q-spectrum.






TALK 4

Basic of Stable Homotopy Theory

Haoyang Liu

We start with a review of some result Tianle talked about last fime. In foday's falk, when I falk
about the category of fopological spaces, it refers fo the category of CW complexes, and pointed
category of topological spaces refers to pointed CW complexes. When we falk about pointed space
(X, xp), we say X has a non-degenerate base point if the inclusion x, — X is an h-cofibration in Top.

4.1 Definition. We say (X, x,) is k-connected if it is path connected and 7;(X, x,) forall 1 <i <k

A pointed map f: X — Y is a k-equivalence if for all x, € X, m (X, xq) ﬂk—(f)> (Y, f(xp)) is an

isomorphism for 0 < n < k, and surjective when n = k.

As a convention, every pointed topological space is (—1)-connected. Now we recall the Freudenthal
suspension theorem from last time:

4.2 Theorem (Freudenthal Suspension Theorem). Let k € N and X k-connected with non-degenerate
basepoint, then the map

p)
Tp(X) = [S", X] — [£S", 2X] = 7,41 (£X)
is an isomorphism if n < 2k + 1 and surjection if n = 2k + 1.

4.3 Example. Note that the degree in this theorem is really sharp. For example, if we look at the map
To(SY) = m3(S?) = 74(S?)

where mm,(SY) = 0, m3(S?) & Z and 74(S3) = Z/2Z The theorem above tells us the theorem holds
only in degree 0, and we see directly from the sequence that m,(S') — m5(S?) fails to be a surjection,
and if we look at m,(S3) — m5(S*), the theorem tells us that this map is actually a surjection.

We can get a slightly different form of the suspension theorem, which leads us to the so-called
“stable phenomenon”:

4.4 Corollary (Freudenthal Suspension Theorem, Restated). Assume X is a tfopological space with a
non-degenerate base point x,, a,b € N with b < a — 1, then the suspension map
Tap(Z9X) — 7fa+b+1(2a+1X)

is an isomorphism.

4.5 Remark. If we fix b and let a > b + 1, then the map in Corollary is an isomorphism for all
such a, which gives us an idea why we call this a stable phenomena, and we can define the stable
homotopy group as

4.6 Definition. For X a pointed CW complex and n € N, we write the stable homotopy group of X as

TSP (X) = colim 7,44 (Z9X).
a

19
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When we pick a > n + 1, then we can see that every morphism in this directed system is an
isomorphism, so the system is terminal and we get

colim 7y, 4(Z9X) = 772n+2(2n+2(X))-
a

This is the first stable phenomena we have seen here.

4.7 Theorem. Let X,Y be pointed CW complexes with Y k-connected, then the suspension map
2 [X,Y] - [ZX,2Y]

is surjective if X is of diemension 2k + 1 and bijective if X has dimension < 2k + 1.

This is something like the generalization of the Freudenthal theorem. Just like how we define the
stable homotopy group, we can define

4.8 Definition. The set of stable homotopy class of pointed maps X — Y is

[X,Y]® := colim[Z%X, Z?Y].
a

Reduced Cohomology Theory The construction of reduced cohomology theory also leads us fo
think about the objects called spectra.

4.9 Definition. Reduced homology theory is a functor E, from pointed CW complexes to graded
abelian groups Ab satisfying the following axioms:

(1) If f ~ g then f, = g.;
(2) For a CW pair (X,A) we have a boundary map 9, : E.(X/A) = E,_,(A);
(3) Leti: Ao X, q: X — X/A and 8, together gives a long exact sequence;

(4) Given a family of spaces X, and i, : X, — \/aXa induces an isomorphism EBE*(X“) -
a
E(\/ Xa)
o

Another thing we can say is once we have this long exact sequence in definition @ we can
consider the CW pair (CX,X) and get

410 Lemma. E,(ZX) = E.(X).
411 Example. A standard example for reduced homology theory is the reduced singular homology
H.(X), The stable homotopy groups m$i°®®(X) also defines a reduced homology theory. The reason

is that firstly, m$i%®(X) is an abelian group by the construction, and we can verify the axioms of a
reduced homology theory.

Note that H,(D?,S') =~ H,(D?/S!, *). However, the unstable homotopy group does not have this
property. For example, m5(D?,S') = 0, but 7r3(D?/S!, %) # 0.

We have also a dual definition for reduced cohomology theory, but since it's almost the same as
homology theory, we just omit the formal definitions here, and we have the lemma
412 Lemma. E*t1(ZX) ~ E*(X).
413 Remark. If we have two cohomology theories E*, E* we say they're isomorphic if we have a
bjjective natural transformation E* — E™* that is compatible with coboundary maps.

Now we can introduce the notion of spectra. We start with the famous theorem mentioned by
Helfer:
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4.14 Theorem (Brown Representability Theorem). E* is represented by {K,},ez. Which implies E"(X) =
[X, K]

This theorem gives us a way to try to think about the cohomology theory by some set of topological
spaces. When we look at the axioms of reduced cohomology theory, we would have more relations
between these fopological spaces {K,,}:

4.15 Corollary. E*(X) ~ E**1(ZX).

This means that [X,K, | = [ZX,K,;;]. By the suspension-loop duality we have [ZX,K,,;] =
[X, QK,,,1]. so we getf structure maps

OCn : Kn s QKn+1.

which are weak homotopy equivalences. Brown's representability theorem tells us that for each given
reduced cohomology theory E*, we get a class {K,,}. Conversely, given a class of spaces {K,,} with the
above structure maps, we can recover the reduced cohomology theory E*. In fact, they determine
each other.

416 Example. There're some examples of these kinds of sequences of spaces:
(1) The Eilenberg-MacLane Spaces K(G, n), for G an abelian group and n € N;

(2) {K,}, which represents the complex K-theory: when n is even, K,, = BU X Z, and when n is odd,
it's just U.

Now we introduce two attempts to construct the “stable model category”, which does not fit info
our requirements. The first one is the Spanier-Whitehead category SW, where objects are finite CW
complexes(we can also add infinite-dimensional CW complexes and written Sw), and morphisms are
stable homotopy classes [X, Y]® := colim,[Z%X, Z2Y]5. But this construction has drawbacks: it does
not have enough objects. One example is that it doesnt have countable coproducts. In section 1.1.4
of [BR2Q], they listed satisfactory 12 properties a stable homotopy category should have.

Now we define the notion of spectra.

4.17 Definition. A spectrum is a sequence of topological spaces {X,,} with structure maps o : =X, —
X141 Which are weak homotopy equivalences.

An Q-spectrum is a sequence of topological spaces {X,} with structure maps 6% : Z, — QZ,41
which are weak homotopy equivalences.

The draw back for the category of spectra is that we do not have enough morphisms. One example
is that

4.18 Example. You can find two spectra representing the same cohomology theory but they're not
homotopy equivalent fo each other.

To summarize, our goal is to find a good category that can represent all the reduced cohomology
theories. Here we present some attempts but failed, and we'll see some constructions that finally
resolve this issue.






TALK 5

K-theory and Bott Periodicity

Haosen Wu

We will assume some knowledge about K-theory throughout this talk and focus mainly on Bott
periodicity. We'll present a Morse-theoretic proof which is originally due fo Boft.

5.1 Theorem (Bott). Consider U = colim U(n), then we have U ~ Q?U. Let BU be the classifying
space of U, then we have BU X Z ~ Q*(BU X Z).

(5a) K-theory. K-theory is sort of a “cohomological theory”. We know for vector bundles we have
invariants like Chern classes or Stiefel-Whitney classes, and we know they can be subtracted from
the universal bundle EG — BG over the classifying space BG by pulling back certain classes of the
universal vector bundle. But these classes all lie in the vector bundles themselves, we would like fo
simply consider the vector bundles themselves.

Operations on Vector Bundles. We have several operations on vector bundles.

5.2 Definition. Given two bundles E and E’ over the same base space B, we can take the pull-back
of the diagonal map A : B — B X B which gives the direct sum bundle E @ E' = A*(E X E').

5.3 Definition. We can define the tensor product of two vector bundles E,E’ over the same base B
as follows:
EQE =]]p7(b)® p~'(b) > B.

beB
These two operations serve as the core ingredients for the K-group. Recall that given a commuta-
tive monoid (M, +,0), then we can form an abelian group G(M) associated to the monoid M defined
by the following universal property: we have a natural map t: M — G(M) and for any homomor-
phisms of monoids i : M — G, there exists a unique group homomorphism ¢ : G(M) — G such that
the diagram

M — G(M)
!
¢
G
commutes. An explicit construction of G(M) goes as follows:
GM) ={(m,n) € M X M}/ ~

where (m,n) ~ (m’,n’) iff there existsae M with m+n'"+a=m'+n+a
5.4 Definition (K,-group). Let X be a paracompact topological space, then

K(X)={E—-E': E,E' € Vect(X)},

where Vect(X) is the set of all vector bundles over X.

23
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With this definition, we know E—E' = F—F' iff there exists a vector bundle A such that E@QF' @A =~
E' @ F @ A as vector bundles, and we say E = F if there exists a bundle A with E® A 2 F @ A. If
we can find a bundle A’ with A @ A" =~ BN, the trivial bundle of rank N.

5.5 Definition. We say two vector bundles E and F are stably isomorphic if there exists an N with
E EBBN ~F GBBN, and we write [E] for the class of stable isomorphic classes.

Then we know that K(X) consists of stable isomorphic classes of vector bundles. Note that stable
isomorphism classes have cancellation property, ie. if A@B =~ A" @ B, then [A] = [A’]. The reason is
that, we can find a vector bundle B’ such that B@ B’ = BN, so we get that A @ RN ~A P BN, and
hence [A] = [A’]. This also verifies that K(X) is an abelian group.

Now we want fo define the reduced K-group. This group depends on the choose of a base point
x. Consider an inclusion map i: A < X where A C X is a closed subspace of X, then this inclusion
induces a morphism i*K(X) — K(A) defined by E — BN — Ely — BN|A. Pick A = {x} C X, then
KA =K({xh =27
5.6 Definition. We define the reduced K-group of (X, *) to be K(X,*) = keri* where i* is defined
above.

The K-group is actually a contravariant functor K : Top°® — Ab, which is representable. How can
we get a representation for K? This is motivated by how we play with classifying spaces. If we can
get a map f € [X,BG], then we are expected to get a unique G-bundle P - X over X. Assume we
have a diagram of categories

D: Vect’(X) 3 vect' (X)L oo 5 Vect(X) = -

With 1, @ Vect"(X) — Vect"™(X) given by E — E@ R™, then we can take the colimit of D, colim D,

then we'll get the reduced K-group K(X) = colim D, and since each Vec‘ri(X) can be represented by
BU(i), we get that
KX)~[X,BU|®Z and X =~[X,BU x Z],.

Assuming Theorem Ei] we readily get
5.7 Corollary. K(22X) = K(X).
Proof. Applying the adjunction Homy(ZX,Y) = Homy(X, QY), we get

K(2%2X) ~ [22X,BU], = [X, Q*(BU x Z2)], = [X,BU x Z], = K(X). O

Another result from Bott periodicity is that
5.8 Corollary. K(S?") ~ 7 and K(S*"**1) = 0.
Proof Note that K(S¥) = [S¥, BU x Z], = 73, (BU) = my41(U). To compute the homotopy group of U,
we nheed Bott periodicity again. By Boft periodicity, we just heed to compute the first two homotopy
groups of U:
mU) = m(U(D) = 7y(SH = Z;
7, (U) =2 m,(U(2)) = m,(SU(2)) = 0. ]

(5b) Proof of Bott Periodicity. For the time issue, let's just outline the proof of the Bott periodicity
theorem El] Let's just focus on the first half In order to show U ~ Q2U, we want the isomorphism
m;(U) =2 m;,,(U), and to achieve this, we study the space P(U; p, q) of all paths connecting p and q,
and the Morse theory fells us that 7;BU = 7;QQSU.

Note that each U(n) has the homotopy type of a CW complex, so the colimit U = colim U(n) is also
homotopic to some CW complex, and by the Whitehead theorem, all weak homotopy equivalences are
homotopy equivalences. We can also express BU as the colimit BU = colim Gr,(2n), where Gr,(2n)
also has the homotopy type of finite dimensional CW complexes, so is BU.
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5.9 Theorem. The loop space of U and BU are also homotopy equivalent to some CW complexes.

Now we consider the following diagram

Gr,(2n) ———— QSU(2n)

l J

Grpi(2n+2) — QSU(2n + 2)

which induces a map BU — QSU. But from the result in Morse theory, this is indeed a weak
equivalence, and by Whitehead theorem, this is a homotopy equivalence. Then we further consider
the map QSU — QU giving a map j: BU — QU, and we define a map BU X Z — QU by
(x,r) = j.(x). This gives a corresponding map on homotopy groups 7m;(BU, (x,r)) — 7;(QU, j.(x))
which gives a homotopy equivalence BU X Z ~ QU.

The second part of the proof is U ~ QBU. If we achieve this, then we would get U ~ QBU =
Q(BU x Z) = Q2U, which proves theorem @ O

To achieve this, recall that we have

5.10 Theorem. Given a fibre bundle U — E — X. If X is paracompact and E is contractible, then
U~ QX.

Ifwe let X = BU, then we just need to construct a bundle E which is contractible. The construction
is just given by
E = colim{Principal bundle V,,|V;, - BU(n)}.

Now the remaining part is to show that 7;BU = 7;QQSU. The proof relies on some path analysis on
the path space Q(M; p, q).

5.11 Theorem. 7;,,(SU(2n)) = 7;(Gr,(C*")).
Proof Let I be the identity in SU(2n), then we have

i 1SU(2n) = m;(QSU(2n, I, —I)) = 1;QQSU(2n).

Claim:Q(M; p, p) ~ Q(M; p, q).

We can prove this claim by construct the homotopy equivalence directly: for y € Q(M; p, q). we
can construct a path 7(t) = y(1 —t), and for all ¢ € Q(M; p, q), we get a map o#y € Q(M; p, p), and
the inverse is given by o — o#y.

With this claim, we get the second isomorphism in the above sequence. Now we apply Morse
theory to show that

m(QSUQ2n); 1, —I) = 7;(Qpin) = 7;(Gry(21)),

where Q. is the smooth submanifold of Q comsisting of minimal geodesics. Geodesics are exactly
critical points of Morse functions, and we have

5.12 Theorem (Minimal Geodesic Index Theorem). Consider the space of minimal geodesics con-
hecting p, q. If non-minimal geodesics has Morse index > 4, then m;(Q,,, Q) = 0 for all i < A, and
hence 7;(Qin) = m;(QSU(2n)) for all i < A,

The second isomorphism 7;(Q,,;,) follows from a detailed analysis on the minimal geodesics, which
implies that Q. = [1,_, Cre(2n). O
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Sequential Spectra

Siyang Liu

In this talk we're going fo intfroduce the construction of stable homotopy category, following the
ideas from Talk @] We start with the objects and morphisms in this category.

6.1 Definition. A sequential spectrum X is a sequence of pointed topological spaces {X'};cn with
structure maps
ok 1 IX! - X1t

or dually, the adjoint structure maps
6k 1 X1 - QXL

Here we do not require that the maps being weak homotopy equivalences. We call a spectrum X
Q-spectrum if the adjoint sfructure maps are weak homotopy equivalences.

6.2 Definition. Let X,Y be two sequential spectra, a morphism f: X — Y consists of a sequence of
pointed maps f': X' - Y' compatible with sfructure maps, i.e. we have the commutative diagram

. xft .
Xt —— XY

i i

) fl+1 .
Xl+l H Yl+1

for each i.

We then define the category of sequential spectra SN to be the category with objects and mor-
phisms given above. In the category SN, we define the functor £: SN — SN 10 be (£X),, = 2X,,, with
structure maps given by suspensions of the corresponding structure maps. Similarly, we can define
the loop functor Q: SN — SN by (QX),, = QX,,.

Now we want a model structure, and furthermore a stable model structure on SN. Let's make
some obeservations on this category SN first.

6.3 Example. There's a special kind of spectrum in SN: the sphere specfrum S, which is the sequence
{S,, = S"},en With structure map TS" =~ S"L. Note that of are homeomorphisms for all i. Given
n € N, we customly write 8" = £"S and 87" = F)'S°.

6.4 Example. The functor EN at the end of the above example is a functor Top, — SN defined as
follows: for each pointed space X, we define

>=dX  when n > d;

N _
(Fq X)n = { %, when n < d.

27
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with structure maps O’EN X
d

We call this spectrum the shifted suspension spectrum associated to the pointed space X. Conversely,

given any spectrum X € SN and any natural number d € N, we define EVS‘(X) = X4 This gives a

functor EvCNl SN Top,. We customly write 2% for FON,

= id for all n # d — 1 and the canonical pointed map * — X forn =d — 1.

Moreover, the two functors
EY: Top, 2SV: EVSI

are adjoint to each other. This means that

6.5 Proposition. For all pointed space X and spectrum Y, we have
HoMp. (X, BV (Y)) & Homgn(FY(X), Y).

and we obtain the initial and final object in this category, which is Z®{x} := .

This adjunction is only categorical, and we want something more: we want this adjunction to be a
Quillen adjunction. Since morphisms of the category SN is defined levelwise, limits and colimits in this
category can be constructed levelwise. That is, given a diagram of sequential spectra {X®, aj - xX® 5

X1, the limit of this diagram is the spectrum {Ii(_mX(i)} with dual structure maps

g

X = limox(,.
i

— sk o
limXx@® — “<_mgx(i> : I'(_m
« i i

and similarly we can get the colimit spectrum {Ii_)mX(i)} with structure maps

k = limg¥

C (1) ; (@)
%imx® = 1M @ * lim 2Xp " = i Xjeis-

i i i

These constructions fell us that the category SN has all small limits and colimits. This tells us that SN
satisfies the first half of condition 4 in [BR20, section 1.1.4].

6.6 Example. Given a pointed topological space A and a spectrum X € SN, we can define the
spectrum A AX fo be the spectrum consisting of topological spaces {A AX,},en and structure maps

. ida Ac
Oiax - ZAAXY) 2 ANEX) —— AN Xph1s

since the wedge sum is defined by wedge sum by S, and the first homeomorphism follows by the
commutativity of the wedge product A. Dually, we can define a spectrum Top, (A, X) by the sequence
of topological spaces {Top, (A, X,)}, with dual structure maps

_ Top,(A,5%)
&K o)t TOPL(A, Xi) — 5 Top, (A, QXjc1) = Q Top, (A, Xjc):

Since morphism spaces are defined levelwise, we get an isomorphism of sets
SNAAX,Y) = SNX, Top,(A,Y))

which gives us property 5 in [BR20, section 1.1.4]

Now we discuss the model structure on SN. We call this model structure the levelwise model
structure. Before going into the definition and proofs, let's make a digression info abstract model
theory.
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(6a) Cofibrantly generated model categories. A model structure on a given cateogry C can in
general very difficult to describe, and we want some smaller classes of fibrations, cofibrations and
weak equivalences that can generate the whole model structure. This leads to the notion of cofibrantly
generated model categories.

6.7 Definition. Let C be a category with all small colimits, and I a set of morphisms in C. We write
I—inj To be the set of morphisms in C that have the right liffing property with respect to all elements
in I, and I—cof the class of morphisms in C with the left lifting property w.rt. all elements in I—in;.

We write I—cell to be the set of all sequential colimits of pushouts of elements in I. This means
that a map f: A — B is in I—cell if and only if there exists a sequence of morphisms

A=X0 ﬁ)Xl ﬂ)Xzﬁ)

such that for each f;: X; — X, there exists an indexed set of morphisms {i, : C4, — D,} and a
commutative diagram

Ha Coc H Xi

which is a pushout square, and that the colimit A = X, — H_)mXi is the morphism f. Write « for the

initial object of C, then we say an object X is an I—cell complex if the canonical morphism * — X is
in I—cell.

Observe that by definition, we have
6.8 Lemma. I—cell C I—cof.
6.9 Example. Consider the category of topological spaces Top, and let

I={S""! > D"n e N},
then I—inj is exactly the set of all Serre fibrations(See e.g. [HatOO, Section 4.2]), and both I—cof and

I—cell are the set of q-cofibrations. I—cell is exactly the class of all CW complexes.

Now we define in an abstract category with a given class of morphisms I the notion of “compact
objects”, which would give us compact subsets when looking at Top.

6.10 Definition. An object Z € C is said fo be small with respect fo I if for all morphisms i: A —
colimX,, = X in I—cell, we have an isomorphism

IR

colimC(Z,X,,) — C(Z,X).
n

6.11 Example. Obviously if Z € Top is a compact space, then Z is small with resepct to the I given
in example @ (See [Leell, Chapter 5] for example) Conversely, I'm not clear if all such I-small
spaces are small.

6.12 Lemma. Small objects are preserved by push-outs. That is, if we have a diagram

A—>B

1

C

consisting of I-small objects whose pushout is P, then P is also I-small.
Now we can define the notion of “cofibrantly generated model categories”:
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6.13 Definition. A model category C is cofibrantly generated if there are sets I and J such that the
following hold.

« The domains of I are I-small;
« The domains of J are J-small;
- Fibrations in C are precisely J—inj;
- The acyclic fibrations in C are precisely I—in;.
6.14 Example. Top with Quillen model structure is cofibrantly generated by classes
I={S"" > D"}uen

and

J={D" - D" X I},;en-
Here we include the number 0 and write S' = @. One can verify that I—inj is exactly the set of
acyclic Serre fibrations and J—inj exactly the set of Serre fibrations.

6.15 Example. The category of simplicial sets sSet with model structure defined in is also
cofibrantly generated. For 0 < r < n, we define the r-horn A'[n] fo be a functor An — Set sending
[k] fo the order-preserving injections [k] — [n] excluding both the identity [n] — [n] and the map
d": [n—1] — [n] which avoids r. We then let

I ={0A[n] - A[n]|n € N}

and
J={N[n] - Aln]ln € N}

fo be the corresponding generating sets for cofibrations and acyclic cofibrations.

We end this discussion with a criterion for morphism sets I and J cofibrantly generating a model
structure:

6.16 Theorem (Recognition Theorem). Let C be a category with all small limits and colimits. Let W
be a class of morphisms closed under composition and contains all identity morphisms. Further, let
I and J be the sets of morphisms in C. Assume that

- W satisfies 2-out-of-3 property,

- the domains of I are small with respect to I,

- the domains of J are small with respect 1o J,

« J—cell CW N I—cof,

« I—inj C W NJ=inj,

« either W N I—cof C J—cof or W NJ—inj C I—in|.

Then C can be given a cofibrantly generated model structure with W being the weak equivalences, I
the set of generating cofibrations and J the set of generating acyclic cofibrations.

Now we go back to SN
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6.17 Theorem. There is a levelwise model structure defined on SN, where the weak equivalences are
levelwise weak homotopy equivalences of pointed topological spaces. The fibrations are the class of
levelwise Serre fibrations of pointed spaces. The cofibrations are generated canonically, and we call
then g-cofibrations.

Moreover, the levelwise model structure is cofibrantly generated with generating sets given by

Y, = {ENsn=1 - FND2 |n,d € N}
Tser = {FYDE — FY(D" x [0,1])4|n.d € N},

In particular, the g-cofibrations are levelwise g-cofibrations of pointed topological spaces.

Here we use the notation convention that given X € Top, we have a functor (=), : Top — Top,
where X, = (X U %, %).

(6b) The stable model structure. Although we have defined a model structure on SN, what we
really want is a stable model structure on SV, which are supposed fo give us the correct "stable
homotopy theory”. We first state the definition of stable model structure. This is very similar to the
"stable infinity category” as mentioned in [Lurl7]:

6.18 Definition. We say a model category C is stable if we have a pair of functors (Q,X) called loop
funcfor and suspension functor, who give mutually inverse equivalences of categories from Ho(C) to
itself.

In infinity category, we can say they are "homotopy equivalences”, but here without the higher
structures we do not have the notion of "homotopy equivalence”, hence we can only say they should
give a category equivalence when passing to the homotopy category Ho(C). To achieve this, we
need to somewhat modify the levelwise model structure by slightly changing the class of fibrations,
cofibrations and weak equivalences.

First of all, we construct the loop and suspension functors on SN. These are defined simply using
the action of Top,, on SN:

6.19 Definition. For X € SN, we define ZX = S' AX and QX = Top,(SL,X).

These two functors £ and Q are not necessarily equivalences when passing to the homotopy
category.
We need to modify the class of weak equivalences as follows:
6.20 Definition. Let X be a spectra, we define the k-th homotopy group of X to be the class of
morphisms [ZKS, X], where [ZXS, X] is the quotient of SN(ZKS, X) by homotopy.
By definition of the levelwise model structure, the map [2S, X] is exactly the colimit colim Tk (X).
n

6.21 Definition. We say a morphism f: X — Y in SN is a 7,-isomorphism if it induces isomorphisms
on all homotopy groups.

We then define the class W’ for the stable model structure on SN to be the class of -
isomorphisms. For fibrations, we need some more constructions. Let f: X — Y be a g-cofibration
of spectra, p: P — Q a levelwise fibration, and i : A — B a g-cofibration of topological spaces, then

6.22 Proposition. The induced map of spectra
homg(f, p): SN(Y,P) - SN, P) \/ SN(Y,Q)

SN(X,P)

is a fibration of pointed spaces, and if f or p is a levelwise weak equivalence, then homg(f, p) is also
a weak homotopy equivalence.

foi: YAA\/ XAB—YAB
XAA
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is a g-cofibration of spectra, and if i is a weak homotopy equivalence or f is a levelwise weak
equivalence, then foi is a levelwise weak equivalence.

homl:l(ia p) : Top*(B, P) i TOp*(A, P) ><Top*(A,Q) TOp*(B, Q)
is a levelwise fibration of spectra, and if i is a weak homotopy equivalence or p is a levelwise weak
equivalence, then homg(i, p) is a levelwise weak equivalence.

Here we enrich the category SN by giving SN(X, Y) a fopological structure which makes it info a
subspace of HTop*(Xi, Y ;). With this enrichment, we get a duality

ieN
SNAAX,Y) = SNX, Top,(A,Y)) = Top, (4, SNX, Y)).
This duality gives the proof of the above proposition.

Let A, EN,S! — ENSO be the map corresponding to the identity map S' — Ev)),, FNS? = S1,
and let MA,, be the mapping cylinder of 4,,, then we have the pushout square

An
EN, St —2 % E)

It !
tn
Fpyi A0, 1], —= M2,

and we write k,, fo be the composition ¢, o iy. This map is a g-cofibration and a ,-isomorhism.

6.23 Definition. We define the stable model structure on SN to be the model structure cofibrantly
generated by the classes

N =N -
stable level®
IN = Jl?vel U {knn(gfll-_l - DS‘,)Ia, ne N}

stable

With this model structure, we get that

6.24 Proposition. A map of spectra f: X — Y has the right liffing property with respect to Jiy ;. if

and only if f is a levelwise fibration of spaces and for each n € N, the map

Xn - Yn XQY,H.l Q‘Xn+1
induced by 6% and f is a weak homotopy equivalence. In particular, if Y = %, then X has the right
liffing property if and only if X is a Q-spectrum.

We call the fibrations described in this Proposition stable fibrations. This implies that fibrant
objects in this model category are Q-spectra.

6.25 Theorem. The stable model structure on sequential sepctra is defined by the three classes below:

- The weak equivalences are the m,-isomorphisms.
- The cofibrations are the g-cofibrations.

- The fibrations are given by Proposition 2.3.10 and are called the stable fibrations.

In this case, the loop functfor Q and the suspension functor % are Quillen equivalences if SN is
equipped with the stable model structure, and therefore they induce categorical equivalences when
passing to homotopy.

6.26 Definition. We define the stable homotopy category fo be the homotopy category of SN with the
stable model structure, i.e. we define
SHC = Ho(SV).



TALK 7

Spectra in a General Model Category

Jishnu Bose

The goal of this falk is to define the suspension and loop functors in the model category and see
what we get from these functors.

7.1 Definition. A model category C is pointed if the unique map from the initial and final object is an
isomorphism. We denote this object by =, and this is called the basepoint.

With this object, we call the composition A — % — B a zero map.
7.2 Definition. A cylinder object of X € C is a factorization of the fold map X [[ X — X,

x]x Gl cvix) L x

We can choose Cyl(X) such that iy and i; are also weak equivalences, (iy,i;) a cofibration, and r an
acyclic fibration.

Similarly, we can define

A
7.3 Definition. A path object for X € C is a facforization of X — X X X,

x 2 px PP v x

~

One can choose PX such that pgy, p; are weak equivalences.
Such a cylinder object and path object are called “very good”.

7.4 Definition (Suspension). Let C be a pointed model category and X € C cofibrant, then we have
the diagram

X][X —> =
!

1 iy

CylX) --—-» ZX.

and we write the suspension of X to be the pushout of this diagram.
Dually, for Y € C fibrant, the loop of Y, QY, is given by

YXY &— %
AN
1T
|
PY <--- QY

33



34 CHAPTER 7. SPECTRA IN A GENERAL MODEL CATEGORY

Thus we get two functors £ and Q.
7.5 Proposition. £ and Q are functors Ho(C) — Ho(C).

Proof Two cylinder objects Cyl(X) and Cyl(X)' give X and ZX' respectively, and we get mutually
homotopically inverse maps ¢; : Cyl(X) 2 Cyl(X)' : c,, then we have and in Ho(C), we get Fo G ~ id,

X L X —— XX

| N

p} 1
C:j“x) L_)ZX\\; C&H,X') 52)(\

G
\d; / K\J -
P 7% Py PRI

and by inverting the objects, we get F and G are mutually homotopy inverses, and therefore X ~ XX’
This tells us that Z is well-defined in the homotopy category. ]

Now given a morphism f: A — B, assume A, B are both fibrant and cofibrant, then we have the
commutative diagram

x+ <— AJ[A —> Cyl(4)
l \quf \LCyl(f)
%+ &<—— BUB — Cyl(B)

Since in Ho(C), Cyl(f) is unique by the universal property of pushouts, we get the map Zf : XA — 2B
in Ho(C).

7.6 Example (Top,). Assume X is a (cofibrant) pointed topological space, then X UX ~ X V X,
Cyl(X) ~ X A [0,1] and the pushout diagram is

XV —> X A[0,1]

l |

% —> 2X

where the horizontal map of the first row is the inclusion at the ends of the cylinder. So XX is just
the reduced suspension in this case, which is given explicitly by

_ X x[0,1]

2= —————.
XVv][0,1]

We can do the same for the category of spectra.
7.7 Example (SN). Let Z be cofibrant sequential spectrum, then we define

(ZZ)n = Z(Zn),

and the structure map is given by

n

k . oz
UZZ . ZZZk _ ZZ}’I+1‘

Since we know that £Z, = S! A Z,, the spectrum £Z is just the spectrum S* A Z.
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The last example is the chain complex of modules.

7.8 Example (Ch(R)). Let A® € Ch(R) be a chain complex, then a choice of Cyl(A®) is just Cyl(A®) =
A" @ A" @ A" with differential given by

dy id 0
6Cy| = 0 dA 0
—id dyu

and the push-out diagram reads
APA —— 0
ool
Cyl(A") — 2A°
so we have ZA® = coker(i) where (ZA") = coker(A" @ A" — A" @A @ A") > A" So A" = A'[1]
and similarly, QA* = A'[-1]
In this case, the £ and Q are homotopy equivalences.
7.9 Proposition. Let C be a pointed model category, then

> : Ho(C) 2 Ho(C): Q
define an adjunct pair, i.e. there exist natural isomorphisms p4 g . [ZA, B] = [A, QB] forany A,B € C.

Sketch of Proof Given any [f] € [ZA, B] represented by F: Cyl(A) — B, we have the sequence

F
AUA - Cyl(A) > B

where the composition is the zero map or F is a left homotopy between two copies of the zero
maps A — B. Similarly, for any [g] € [A, QB] represented by G: A — PB, then the composition
QA — PB — B X B should be a right homotopy between zero maps A — B.

If we choose A, B to be both fibrant and cofibrant, then the left and right homotopies should
coincide. ]

7.10 Definition. If ¥ and Q are equivalences in the homotopy category, then C is called a stable model
category.

7.11 Example (Top,). The category of pointed topological spaces with Quillen model structure is not
stable. For a functor £ to be a categorical equivalence, it should be full, faithful and essentially
surjective. Full means any function [A,B] — [ZA,ZB] should be surjective for any A, B, but this is
not true if A = S? and B = S!, since then [A,B] = 0 but [ZA,%B] =Z

7.12 Example. The category SN(with the stable model structure) is stable, and Ch(R) is also stable(with
either injective or projective model structures).

7.13 Definition. Lef f: A = B be a morphism in C, then the cofiber of f is the pushout of the diagram

A—L v

[

x —» cof(f)
The fiber of f is the pull-back of the diagram

fib(f) —— *

Lol

A#B
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7.14 Proposition. If X,Y € C, then [ZX,Y] and [X, QY] are groups and the adjunction bijections
px,y . [2X,Y] = [X,QY] are natural group isomorphisms.

Now let A L BS C be a sequence with f a cofibration between cofibrant objects and C = cof(f).
Let X be a fibrant object in C, we want to define an action of [2A, X] on [C,X]. basically we want a
map

[C,X] X [ZA,X] - [C, X].

Pick an element on the group [ZA,X] ~ [A, QX], which is represented by a (right) homotopy h: A —

PX bewteen two zero maps A — X, and we want PX to be very good, ie. PX o, X is an acyclic
fibration. Let q: C — X, then we have a diagram

Since f is a cofibration, we get a lift ¢ : B — PX of this diagram, then pyog =qog and pyogo f =
p1 © h =0. From the pushout diagram

a1y
!
F—

we get a map w: C — X. Now our action is given by [q] o [h] = [w]. This is well-defined and is

O 4—

natural in X. Dually, we can define an action for a fiber sequence F 5 E L8 B where p is a fibration
between fibrant objects an action [X, F] X [X, QB] — [X, F].

7.15 Example. If X = S° then the action is wy(F) X my(QB) — mo(F), which is just the usual action
of ,(B) on fibers of the fibration.

Now let A L B 4 C be a cofiber sequence. If f is a cofibration between cofibrant objects, then

we have
[CUZA,CUZA] ~[C,CUZA] X [ZA,CLUZA] - [C,C LU ZA].

The identity map id € [C UZA,C U ZA] inducesamap @: C - CUZA.
7.16 Definition. A cofiber sequence in Ho(C) is a diagram X — Y — Z which is isomorphic fo a
diagram A L B L C where f is a cofibration between cofibrant objects and C = cof(f).

This diagram is equipped with a right coaction in Ho(C) Z — Z U ZX isomorphic fo the coaction
described before.

Dually, we define X — Y — Z fo be a fiber sequence if it's isomorphic o F 5 E L B where p is
a fibration between fibrant objects and F = fib(p). This admits a right action X X QZ — X.

7.17 Definition. Let X - Y — Z be a cofiber sequence in Ho(C). Then we can define a boundary

o (0,id)
mapd:. Z — ZUZX —> ZX.

Similarly, for fiber sequences, we can define

o}
0: QZ - XxQZ—=X
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Note: The boundary map can recover the data of the action/coaction by

0

X Sy A Yy TX

Lol e L

A S\ B \ 0 —3 3A

where the first row is a cofiber sequence, then A - B — C is also a cofiber sequence, and C — XA
is the boundary map.

d
7.18 Proposition. Assume X — Y — Z is a fiber sequence, then so is QZ —» X L Y with the action

QZ xQY - Q7

id xQg (id,— id) *
where QZ X QY —— QZ X QZ —— QZ X QZ — QZ.

-Q
7.19 Corollary. QY 5 QZ — X is also a fiber sequence.

We also have dual results for Z, namely,

d
7.20 Proposition. X L Y 5 Z a cofiber sequence, then Y 5 Z — %X is a cofiber sequence, and
similarly we can get a coaction
O:ZX - ZXUuXY.

3 =f _ .
7.21 Corollary. Z — X — XY is a cofiber sequence.

(7a) Long Exact Puppe Sequence.
7.22 Theorem. Let X L y& 2z be a fiber sequence in Ho(C), and d: QZ — X a boundary map,
A € Ho(C), then we have the long exact sequence

—_DQ"a * -1 n-1 Qn—l « a* " *
a4, nriig] Sy SO 4 az1 2 ax]) B a v & a2

where all but the several terms at the end of this sequence are group homomorphisms, and the maps
at the end of this sequence are maps of pointed sets.

Proof Suppose (X - Y - Z) ~ (F LEL B) where p is a fiber of fibrant objects, then it's enough

to check [A, F] = [A,E] Ll [A, B] is exact. Since poi =0, we get p,oi, =0, soim(iy) C ker(p,).
Let u: A > E be such that [pou] =0, ie. thereis h: Cyl(A) — B with Cyl(A) very good, so that
hoiy=pouand hoi; =0. Then we have a diagram

A—LSE

Lol

Cyl(A) —5 B
Since p is a fibration, we have a lift H: Cyl(A) — E such that Hoipy =u and poHoi; = hoi; =0,
then H o iy lifts over F, so we get v: A — F with iov = H o i;. So then i, [v] = [u]. H

Finally, we have a dual Puppe sequence for cofiber sequences:

7.23 Theorem. Let X - Y — Z be a cofiber sequence in Ho(C) and 0 : £Z — X, A € Ho(C), then we
have the long exact sequence

(-D (o) ' I
>

o D [ZMHIX A [E"X,A] - - — [2,A] 55 [v,4] 5 [X, Al

In Top,, A= SO, then we recover the long exact sequence of homotopy groups.






TALK 8

Triangulated Structures

Siyang Liu

In this talk we're going fo prove the following theorem:
8.1 Theorem. If C is a stable model category, then Ho(C) is friangulated.

Firstly, we recall the definition of the triangulated structure.

(8a) Triangulated Category. Let T be an additive category with an additive self-equivalence
T: T - T then

8.2 Definition. A triangle in T is a sequence of morphisms X £> Y & Z & >X. A morphism of

triangles from X - Y - Z > XX to X' - Y’ - Z' - X' is a commutative diagram

X f1>Y f2>Z fs}ZX

{E S S 2

X' f1>Y' f2>Z' f3>ZX’.

Roughly speaking, a triangulated category is such an additive category T with a class of triangles
named "distinguished triangles” satisfying some axioms, which can be thought of as an analogue of
long exact sequences of homology groups of modules.

8.3 Definition. A triangulated category T is an additive category with an additive self-equivalence Z,
often called the shift functor, with a class of distinguished triangles, or exact triangles, satisfying the
following axioms:

(T1) The triangle
# — X —m—— X — %

is exact for every X € T. A triangle isomorphic to an exact triangle is exact. Every morphism
f: X =Y fits info some exact triangle

xLvy:z%sx

(T2) The triangle

xLy:z%sx

'We also use the notation [1] to denote such an equivalence, but here we use X in order fo be consistent with the
corresponding functor in stable homotopy category

39
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is exact if and only if the friangle

Y—>Z—>ZX—f>ZY
is exact.
(T3) Let
x L Ly gz Bysx

b e e

X’ fl\Y fz\Z’ f3>ZX’

be a diagram such that the two rows are exact friangles and the left square commutes. Then
ohe can add a morphism ¢5: Z — Z' to this diagram such that the resulting second and third

square commute.

(T4) Let

X f1>Y f2>Z fs}ZX

~

X gl}U 82 v g3>ZX

v

Z5]
~N-

w

us
~N-

2Y

be a commutative diagram such that the column and two rows are exact triangles. Then there
is an exact triangle

U1 U2 U3
Z—V->W-—=32Z

that can be added 1o the first diagram to obtain the commutative diagram

f1 S 2 f3
X Sy \ 7 y X
|| w
g oo, oo,
1 2 3
X > U > > 2X
Uz U2
~ ~
W e—W
Us U3

~ sf ~
Yy =3 57
Axiom (T4) is also known as the octahedron axiom. If we regard Z = Y/X and V = U/X, then

Y/X

U/X U This is an intuitive way fo understand

the octahedron axiom is the same as saying that —
this complicated axiom.

Now we turn to the proof of theorem @ We choose the shift functor in Ho(C) fo be the suspension
functor X, and the class of distinguished triangles to be the cofiber sequences X — Y — Z with the
map Z — XX given by the boundary map, then (T1) is almost trivial.
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Proof of (T1). It remains fo show that given any map f: X — Y, we can complete f fo a cofiber

sequence X L Y LA Z. This is done via cofibrant replacement: for any X € C, we have a cofibrant
object X’ € C with a fibration X’ — X. Let X', Y’ be the cofibrant replacement of X, Y, respectively,
then the commutative diagram

« —S> Y

U
foi
X 5y

gives us a lifting ' : X' — Y’ which satisfies jf' = fi. 2 out of 3 axiom tells us that f’ is a cofibration,

hence we get a cofibration between cofibrant objects X’ L Y'. Cofiber Y' &5 7 of f' gives a

cofiber sequence X’ L) Y’ LN Z'. In the homotopy category Ho(C), since all weak equivalences are
/-1
isomorphisms, by inverting j we get the cofiber sequence X L Y 57, Z'. O

Next we prove (T3) and use (T3) to prove (T2).
8.4 Lemma. Let C be a stable model category. Assume that we have a commutative diagram in Ho(C)

x Lyy By g ¥osy
\Lﬂbl \L¢z \LZ(},’I
x L yy 8y ¥y

where the two rows are cofiber sequences with respective boundary maps, then there is a map
¢5: Z' —» Z making the resulting second and third square commute.

Proof Since the two rows are cofiber sequences, by universal property of pushout, there exists a

unigue morphism ¢ : Z' — Z making the diagram

YI g% ZI

I s

y 237

commutative. Now we need to verify that the diagram

7 Xy sy
\L¢3 J/Z% (8.1)
AL ))'e

commutes. Note that the horizontal arrows are boundary maps of cofiber sequences, ie. they are

given by the composition
O] oulid
Z —>ZuUZX — 2X,

so we firstly show that the diagram

\L¢3 \L¢'3UZ¢1 (8.2)
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commutes. Pick any A € C, let's look at the diagram

[Z,A] $—— [ZUZX,A]

T T

[Z/,A] «— [Z' u=X,A].

Pick (a,B) € [Z' UZX',A] where a: Z' - A and 8: X' — PA are representatives of equivalence
classes, then we have the commutative diagram

x —£5 pa

o

Y 254

where f' is a cofibration while p, is an acyclic fibration, thus we have a liffing ¢ : Y’ — PA making
the diagram commutative. This implies pop = ag’ and we get a diagram

X’ Hf Y’
l ig’ P19
* —S 7'
\\ w
N
S

A

where piof' = p1f = 0 since B: X' - PA comes from the map ZX' — A, ie. f is a homotopy
between zero maps. The universal property of pushout then gives us a morphism w: Z" — A, which
is exactly the morphism [a] ® [B]. and the image of this morphism under the map [¢53,A] is the
composition [w o ¢5].

On the other hand, via the image [¢;LZ¢;, A], the morphism (a, 8) is sent to the pair (ao¢s, fod,),
and we have a commutative diagram

x 2% pa

Vb
y 2298 4

The morphism ¢¢, : Y — Y’ — PA fits into this diagram as a lifting, and in the diagram

f

X —Y
\L lg P19¢$2
* — Z

The morphism w¢; makes the diagram commutative, hence we get that [wes] = [w], which implies
that the diagram (8.2) is commutative for all A, and hence the diagram (B.) is commutative. This
proves the lemma. 0
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There's a Corollary from the proof of axiom T3:
8.5 Corollary. Given a commutative diagram in Ho(C)

x Lyy &y ¥y
\Lﬂbl \L¢2 \L¢3 \LZ¢1
f \ g \ U
X 7 Y 7 Z /[ ZX,

where the fop row is a cofiber sequence with boundary map u’ and the vertical arrows are isomor-
phisms(i.e. weak equivalences), then the botfom row is also a cofiber sequence with boundary map
U

Now we prove axiom (T2) using the axiom (T3). In a stable model category C, we have the
suspension-loop adjunction, which gives for all X € C the unit and counit maps

% X = QZX,
ex i TQX - X,

which are isomorphisms in Ho(C).
8.6 Lemma. Let C be a stable model category, then

xLvZ&;

is a cofiber sequence in Ho(C) with boundary map u: Z — XX if and only if

—r)‘loQu
oz XM vy

is a cofiber sequence with boundary map egl og:Y — X(QZ).

Proof In the previous talk we have stated that X preserves cofiber sequences, ie. if X i) Y L Zis
9
a cofiber sequence with boundary map d: Z — 2X, then Y L Z — XX is a cofiber sequence with

-3
boundary map X —f> 2Y. This fells us that in a stable model category C, the functor ¥ sends
cofiber sequences to cofiber sequences(via a tricky isomorphism).

Now we turn to the proof Assume X L Y LY Z is a cofiber sequence in Ho(C), then using the
counit map ex, we have the following commutative diagram

TOf, Qg ZexloZnyloZQu

QX —5 3oy —2 yoz XX Us20x

le v e Jzex

x— vy 8 vz > TX,

where the vertical arrows are all isomorphisms. Therefore we get that the first row of this sequence
is also a cofiber sequence. Now we look at the sequence

Qf Qg
QX — QY — QZ.

Note that Qf automatically fills in a cofiber sequence

Qf a B
QX — QY - W - 2QX.
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Applying X tfo this sequence and comparing with the sequence QX — QY — ZQZ — Z2QX, we
get a commutative diagram

zQf Qg ZexloZnyloZQu

TOX —3 30y — TQZ —% 320X

[ oo
sox 2y say 2%y sw s s20x.

By lemma @ there exists a morphism t: ZQZ — ZW filling the above commutative diagram, and
by 5-lemma, this is an isomorphism, but then t = Zt’ for some isomorphism t’' : QZ — W which
gives the commutative diagram

Q
QXHfQY s w g S TOX
H I H
Q Q PRQ
ax -y gy 28y gz XX sox

with vertical arrows isomorphisms, hence the sequence QX — QY — QZ — ZQX is a cofiber
sequence with boundary map QZ — XQX. Now via the counit map, we get a commutative diagram

5 Q —=2Q -0
Q7 XX sox — 2 sy — T2 5oz

L= Jo H

|| —10 _ _—1
oz — X o x T vy 2% 5oz

-3 Qu
thus the sequence QZ XX L Y is a cofiber sequence with boundary map €;'g: Y — ZQZ by

the previous Corollary. This proves one side of the lemma.
-5 Qu
On the other side, assume QZ SEC SN ¢ L Y is a cofiber sequence, then we know that

€;log
xLyZ®% sqz

=(nx'Qu)
is also a cofiber sequence with boundary map Q7 RS ). ¢ By use of the counit map, we get

a diagram

-1 Z( —IQ)
X / 8 vz XV sx

%
H H Je
X T sy E sz

with the first and second square commutative, and the commutativity of the third square follows from

> X

u

the adjunction of £ and Q. Since vertical arrows are all isomorphisms, it follows that X L Y 5 Z 5
>X is a cofiber sequence with u: Z — ZX the corresponding boundary map. [

The last step in the proof is to verify the octahedron axiom.

8.7 Lemma. Let C be a poinfed model category and suppose we have cofiber sequences

x Doy Ly

xE vy

u; U
Y—-U—>W
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in Ho(C) with g, = u; f;. Then there are maps v,: Z —- V, v,: V. - W and vy: W — £Z making
the following diagram commute

X f1 Sy fa \ 7 f3 y
|| w
~ ~
X 81 > U 82 > 83 >
U 1%
~ ~
— W
us U3
~ -
if
Y =2 57

Furthermore,
« Z N |4 22, W is a cofiber sequence with boundary map uvs,

- the coaction of £Z on W is given by

W—)WUZY——f—Z>W 2Z,

where the first map is the coaction of £Y on W from the third cofiber sequence.

To prove this lemma, we need to categorical facts:
8.8 Lemma (The Patching Lemma). Let

B < A s C
Y &— X s Z

be a commutative diagram such that C — Z and BUy4 X — Y are cofibrations(respectively acyclic
cofibrations), then the map BLiy C — Y Uy Z is a cofibration(respectively acyclic cofibration).

8.9 Lemma ([Str11]). Assume that we have a 3 X 3 diagram
Ay < A, > A

T 1T 1

with pushout of rows A « B — C and of columns X « Y — Z, then the pushout of these two diagrams
are isomorphic.

An immediate consequence is that, the cofiber of a map of pushouts is the pushout of a map of
cofibers.

Proof of Lemma @ We can write the three cofiber sequences in the following way:

T
:

\81

fll ||
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The pushout of each row gives the diagram *x « Z 2, V., and the pushout of columns give the
diagram W « % — x, therefore the lemma TeIIs us ThaT the push-out of % « Z A, V is exactly W,

with the map v, : V — W. This tells us that Z N v 2, W is a cofiber sequence.
Now we verify the coaction map «: W — W L ZZ. Pick any object A € C and let ([q],[h]) €
[W,A] X [Z,PA] be a pair of representatives, then we have the diagram

7z "\ pa

Ivl qj//\( yo
e

U % A,
which gives a lifting ¢ : U — PA, and the diagram

U1 P\

Z SV Sy PA

\L \LUZ J/Pl
[][

w —— w Ay

inducing the map [q] « []. Now by composing with f,, we get a pair of representatives ([q], [ho f>]) €
[W,A] X [Y, PA], which gives a commutative diagram

Y % PA

e L
U % A,

and hence g, gives the required lifting, and in the diagram

231

s U 252y pa

% &— =
&
=

[q] * [] gives the required coaction. This tells us that the composition W S Wuzy __E, Wuzz
gives the coaction map, and hence W f—> 27 gives the boundary map of the cofiber sequence
Z — V — W. This proves the lemma. O

And we can conclude that Ho(C) is triangulated.

(8b) Some Consequences of Stability. We have seen that in a stable model category, we can
extend a given cofiber sequence X — Y — Z from both directions: in any model category, Y — Z —
>X is always a cofiber sequence, but here QZ — X — Y is also a cofiber sequence. Note that given
amap Y — Z, we can get a fiber sequence X' - Y — Z in Ho(C) with coboundary map QZ — X'.
A natural question is, is the cofiber and fiber sequence coincide in a stable model category? The
answer is affirmative.

8.10 Lemma. Let C be a pointed model category, and let

u v g’
> B3 ¢ 2

A S YA
J/oc \Lﬁ J/—Ezch
az s x_Iyy_ 847
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be a commutative diagram in Ho(C), where the top arrow is a cofiber sequence and its boundary map
and the bottom row is a fiber sequence with its boundary map. Then there is a fill-inmapy: C - Y
making the resulting second and third square commutative.

Or dually, we have

v 0

A—4sB_Yyc_Pysqp
8.11 Lemma. Let C be a pointed model category, and let \L_Qyom \Lﬂ J/y be a
0z 3y x Tyy_ 8y

commutative diagram in Ho(C) with the top row cofiber sequence with its boundary map and the
botfom row a fiber sequence with its boundary map. Then there is a fill-in map a: B — X making
the resulting diagram commutative.

This would then immediately give us the equivalence between fiber and cofiber sequence as follows:

8.12 Corollary. Let C be a stable model category. If X L Y 5, Z is a fiber sequence in Ho(C) with
boundary map d: QZ — X, then

d f
Q7 -X->Y

is a cofiber sequence with boundary map —egl og: Y - XQZ
or equivalently,

8.13 Corollary. Let C be a stable model category. If X L Y 5 Z is a cofiber sequence in Ho(C) with
boundary map d: Z — ZX, then

8 u
Y->Z->232X
is a fiber sequence with boundary map f o (=nz'): QZX - Y.
Therefore,

8.14 Proposition. Let f: X — Y be a map in a stable model category C. There is a weak equivalence
Ff — QCf between the homotopy fiber of f and loops of the homotopy cofiber of Cf.

In a general triangulated category T, by axiom we have exacttriangles X —— X >k > 22X
and * —— Y ——=— Y —— x . Taking their product and coproduct, we get the commutative
diagram

X — X]J[Y Y > XX,

X —3 XY Sy S TX
\
/4

' XXy C . . .
and by axiom (T2), we get a map X [[Y —— Y [ X, which is an isomorphism by construction.
Therefore we get

8.15 Proposition. Let C be a stable model category, then for fibrant and cofibrant objects X and Y,
the canonical map yxy: X[[Y = X [[Y is a weak equivalence.

By use of the fold map X [[X — X and the diagonal map X — X [[ X, we could then get the
addition operation of [X, Y] in a stable model category C in the following two ways:

X%XHX%YHY%YHY%Y

-1
X —2 5 X x 22 xrx LHES vy —2y v
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(8c) Exact Functors and Quillen Functors. Given two triangulated categories T and T’, we say
a functor F: T — T’ is exact if for any exact triangle A - B — C — XA, the image F(A) - F(B) —
F(C) — ZF(A) is an exact triangle in T'. Now let C and D be stable model categories. Recall that

8.16 Definition. A functor F: C — D is left Quillen if F preserves cofibrations and acyclic cofibrations.
A functor G: D — C is right Quillen if it preserves fibrations and acyclic fibrations. An adjunction of
functors

F:Cz2D:G
is a Quillen adjunction if F is left Quillen and G is right Quillen.

If F: C — D is left Quillen, we define its left derived functor LF: Ho(C) — Ho(D) to be the
functor LF(X) := F(X°)), and if G: D — C is right Quillen, we define ifs right derived functor
RG: Ho(D) — Ho(C) to be the functor RG(Y) := G(Y/®). The result here is that

8.17 Theorem. Let C and D be stable model categories and
F:CsD:G

be a Quillen adjunction. Then the derived functors LF : Ho(C) — Ho(D) and RG : Ho(D) — Ho(C)
are exact functors.

In particular, the derived functors of £ and Q are exact.
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Steenrod Algebra and Adams Spectral Sequence

Fan Yang

(9a) Construction of Steenrod Operator. We just consider the coefficient in Z/2Z. Consider

the composition of maps X i X X X = K(Z/2,2n) which represents the cross product a X a for
a € H"(X, Z/2). Recall that there is a bijection [X,K(G,n)] =2 H*(X, G) for G an abelian group.

The cup product and cross product are all commutative since we are working over Z/2, so we can
consider the permutation map T: X X X - X X X by T(x;,X;) = (x5, x;) where a X a = T*(a X ).
We can also view a X a as the map X X X — K(Z/2,2n), and we will get a homotopy f;: a X a —
(@axa)T= foT: (axa)T — (a X a)T?> = a X a, and so if we compose these two homotopies, we
would end up with a loop f;To fr: axa = (axa)T — (axa)T? = axa of maps X xX — K(Z/2,2n),
hence a map S! XX xX — K(Z/2,2n). This means we can choose an appropriate homotopy to make
the loop of maps null-homotopically extend to a map D? x X x X — K(Z/2,2n). The unit disk can be
viewed as the upper/lower half disk of S?, and similarly we would get a map S? X X X X — K(Z/2,2n)
by composing with T again. Repeating this process, we would get a map

s® x X x X 5 K(2/2,2n)

where (s, X1, X;) = @(—S, X5, X;). Now going back to the original composition

X — 5 XxX — K(Z/2,2n)

L

(S*®* x X xX)/T

Note that (S® XX xX)/T = XXRP*. Kiinneth theorem implies that H*(XXRP*®) =~ H*(X)QH"(RP*®)
where H"(RP*;Z/2) = Z/2[w!].

This gives us a cohomology class a in H**(X X RP*®) which can be written as )P W x al where
al € H™(X,7/2).

9.1 Definition. We define the Steenrod operation Sqi(oc) =a

(9b) Steenrod Squares and Steenrod Algebra.

9.2 D_efiniﬁon. For X a topological space, Steenrod squares are maps of the form Sqi . HYX,7/2) —
H*+i(X; 7/2) satisfying

(1) Sqi(f*oc) = f*(Sqi(oc)) for f: X — Y continuous;

49
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(2) Sq'(a+B) = Sq'(a) +Sq'(B);
(3) Sa'(auB) = T;Sa’ (@ U ST (B);

(4) o: H"(X;Z/2) — H"'(ZX;Z/2) where the suspension isomorphism given by reduced crossed
product with a generator of H'(S!;Z/2), ie. Sq'(o(a)) = o(Sq'());

(5) Sq'(a) = aUa if a € HI(X;Z/2) and Sq’(a) =0 if j > 1;
(6) Sq° = id is the identity:

@) Sq1 is the Bockstein homomorphism (8 associated with the coefficient sequence 0 —» 7/2 — 7/4 —
Z/2 = 0.

These axioms give us properties of the Steenrod squares.

a

1£)

9.3 Definition. Sq"Sq" = )] (ba__];jl) Sq**=I sq’ for a < 2b is called the Adem Relation.
j=o

9.4 Definition. The Steenrod Algebra A, is generated by additive homomorphisms Sq" : H™(X;Z/2) —
H™™M(X,7Z/2) where Sq" satisfies the Steenrod squares properties and the Adem Relation.
Alternatively, we can define the Steenrod algebra A, as an algebra of cohomology operations.

9.5 Definition. The mod 2 Steenrod algebra A, is the Z/2-graded algebra of conomology operations
H*(—,7/2) - H*(—,Z/2).

9.6 Theorem. The two definitions above are equivalent.

(9¢) Structure of Steenrod Algebra. To discuss the structure of Steenrod algebra, we need

9.7 Definition. A monomial Sq™ Sq’ -+~ Sq' in A, is admissible if iy, > 1 and i,_, > 2i, for k> r > 2.
9.8 Theorem. As a module over Z/2, the admissible monomials form a basis of the Steenrod algebra
A,

Sketch of Proof Step 1: to show arbitrary monomial Sqi1 Sqi2 ---Sqi" can be uniquely written as a
sum of admissible monomials.
Let Sq' = Sq™ Sq - Sq™ be a monomial that is not admissible, then there is at least one pair,

k
say Sq'" Sg'*!, that Adem Relation can be applied. Define the moment of SqI to be m(I) = Z Sig
s=1

and assume by induction that SqI for m(I) < m can be written as a combination of monomials, and
we look at the case m(I) = m, then

I

Sqil Sqiz Sqir Sqir+1 Sqik

iy
2

Sq

—_—

— a; Sqil Sqiz Sqir+ir+1—j SqJ Sqir+2 Sqik,
0

—

but if we look at m(I), we have

r—1 k
m = Zsis+r(ir+ir+1—j)+(r+1)j+ Z Sig
s=1 s=r+2

with ri, + (r + )i, > r(i, + i,y — j) + (n+1)j when j < l;’ < iy41. This proves our first claim.
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Step 2: we want to show that the admissible monomials are Iineorl¥ independent. Evaluating
admissible monomials on u®" € H"((RP®)\",Z/2), consider Za, Sq (u®") = 0, where SqI is
I

admissible and has degree < n. (Here Sq* = Sq™ Sq' -+ Sq'* with I = (iy, iy, -+ , ij) where the length
of I is k and the degree is i; + -+ + ix. If we can show a; = 0 for all I, then we are done. Assume if
> ap Sql(u‘g’"‘l) = 0 for all monomials of degree < n—1, then a; = 0. Also assume that a; = 0 if the
length of I > 0. By Klinneth theorem, we can do factorizations like SqI(u®”) € @H’(RP‘”,Z/Z) ®

!
H=r((RE®)M1,Z/2). By Cartan formula, Sq"(u®") = " Sq’ () ® Sq'~/ (u®™™1). Consider the

JcI
case r = 2™, then we have
ok .
us, i =0;
i 2k _ k+1 .
Sq () =1 w2, i=2k
0, otherwise.

where Z/2[w] &= H(RP®;Z/2) and |u| = 1. This implies that

S’ () = W2 T =0, = (k1,262 . 201)
0, ofherwise.

SO SqJ’” is the only non-trivial action. Consider the projection

2" ® SqTTm(u®n-1), i the length of I is m;

I ®n —
pr(Sa (=) {0, oftherwise.

then

(~; a; Sq'(u®)) = Z a;pr(Sqt (u®m))+ Z a;pr(Sq' w®m) = 2" ® Z a; Sqi I m u®n-1)y,

length=m length<n length=m

So admissible monomials of the form I —J,, is the same as admissible monomials of length m or
less and degree d — 2™ + 1. By assumption, we have a; = 0 for all I, and this proves the linear
independence. ]

(9d) The Adams Spectral Sequence. The motivation of this spectral sequence is that, we have
two spectra X, Y, and if we apply the mod-p singular cohomology H* fo them, we get

[X, Y] 2 Hom g, (H*(Y), H*(X)),

where Homﬂp(—, —) is the morphism in the category of modules over A,. We want fo see the inverse
to this morphism.

9.9 Theorem. For X and Y spaces of finite type, with Y finite-dimensional CW complex, there is a
spectral sequence, converging fo (p){Y,X}* with the second page

ES,t ~ Es I'I'S’t H* X;F,), H* Y,F,)),
2 = _,qp( ( p) ( p))
and differentials dr of bidegree (}’,V — 1).

Recall that {Y, X}, = Ii_)mk[Z””‘Y, "X] and (,»G := G/{element of finite order prime to p}.

9.10 Definition. A differential bigraded module over a ring R is a collection of R-modules {EP-4}
where p, q are integers together with an R-linear map d : E** — E** which is called the differential
of bidegree (5,1 —s) or (—s,s — 1) for some integer s st. dod = 0.



52 CHAPTER 9. STEENROD ALGEBRA AND ADAMS SPECTRAL SEQUENCE

9.11 Remark. We can define homology and cohomology of differential bigraded module HP4(E**,d) =
ker(d® : EP4 — EP*S4=5+1)/im(d® : EP~S4+5—1 5 EPQ),

9.12 Definition. A spectral sequence is a collection of differential bigraded R-module {E;"*, d,} where
r =1,2,--- and the differentials are either of bidegree (—r,r — 1) or (r,1 —r). For all of r,q and p,
Epf) = HPA(E;™, d,).

Now we still need to specify the notion Ext. We write the category of left I'-modules as rMod,
and for M,N, tMod(M, N) is the T'-linear map between the leff I'-module. Consider the suspension
functor M €r Mod, sM the graded vector space (sM),, = M,,_,, then the action of T is given forr € T,
r.(sx) = (=1)%97s(r - x). When x € M, sx is the corresponding element in (sM),.;. Write s! = s
and s-s"! =" For M, N, we define Hom’lf(M,N) =1 Mod(M, s"N). Suppose we have a long exact
sequence

of modules with P; projective, fix N €r Mod, then Hom;(—,N) gives us the complex
0 - Homp(R,N) - Homp(B,N) — -

and we define Ext™*(M, N) to be the homology of this complex.

9.13 Theorem. If L, M, N are I'-modules, then we have the product map E>dl‘:’t(L,M)®E>d§/’tl(M,N) -
E>d¥+p/’t+tl(L, N), which is called the composition product.

9.14 Theorem. There are operations Sqi on ExT;’*([Fz, [F,) satisfying the Steenrod squares property.
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Modern Categories of Spectra

Qiyu Zhang
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TALK 11

Other Categories of Spectra

Jonnathan Michala

(11a) Spectra of Simplicial Sets

11.1 Definition. A sequential spectrum of simplicial sets X is a sequence of pointed simplicial sets X,
n € N and structure maps o : £X,, — Xp,41. A morphism f: X — Y of spectra is a sequence of
pointed maps f, : X, — Y, such that the following diagram commutes:

Zfn

X, — 2% 3,

E

fn
)(n+1 ___ii> Y%+1-
We denote this category by SNV(sSet,). More details can be found in (Hovey).
11.2 Theorem. SN(sSet,) has a stable model structure.

11.3 Theorem. The geometric realization | « | and the singular complex functor Sing are Quillen
equivalent:
| o]: SN(sSet,) < SN(Top,): Sing.

11.4 Definition. We then obtain the symmetric spectrum X in simplicial sets, which is a sequence of
pointed simplicial sets {X,,} such that

1. X;, admits an action of &,, which fixes the base-point;
2. there are maps o : S' A X, = X141
idACpH+1 On+k-1

id AGn , _ _ ,
3. Sk AX, —20 sk-1 AXpi1 X,4k is compatible with the & x &,-actions on
the domain S¥ A X,, and &,,,-action on the target X, .

A morphism f: X — Y is just a sequence of &,,-equivariant maps f,, : X,, = Y,, so that the diagram

id
sl ax, S8 s1ay

Sna1

Xl’l+1 % Yn+1

and we get the category of symmetric spectra S*(sSet,,).
11.5 Theorem. S*(sSet,) has a stable model structure.
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We have a forgetful functor UJ@ from symmetric spectra to sequential spectra, which is right adjoint
fo PZ.

11.6 Theorem. The functors [U@ and [P’§, are Quillen equivalent between simplicial sets SN(sSet,) and
S%(sSet,.). Moreover, we have a commutative diagram

SN(sSet,) — SN(Top,)

! !

S%(sSet,) — S*(Top,).

(11b) Diagram Spectra.

11.7 Definition. Let W C Top, be a full subcategory of all pointed topological spaces isomorphic to
finite CW complexes, then we define the W-spectrum to be a functor W — Top,, enriched over Top,,
and morphisms are just natural transformations. We write the corresponding category by SW.

11.8 Theorem. SW has a stable model structure.

The functor [U\Q’: SW — SN has a left adjoint, and this adjunction is a Quillen equivalence with
respect fo the corresponding model structure, where (U{F),, = F(S™).
If F is enriched, then we get F4 g : W(A, B) — Top,(F(A),F(B)) so that Fy g : F(A) AW(A, B) —

id AXA,B

F(B), and we also geT asp: B = W(SB) —> W(A A A B), and hence we get F(A) AB ———

F(A)AW(A, A /\B) _AAN, F(A A B). This means we get ZF(S") = F(S") AS! — F(S™*!). This gives
the structure map.

(11c) More Spectra. Given any model category C with a left Quillen functor T : C — C with right
adjoint U, then we can form the category SN(C, T) with object X where X,, € C, n > 0 and structure
maps o, : TX, — Xn+1 f: X — Y are just sequences of maps f, : X,, — Y,. Fibrant objects are
just U-spectra, ie. 6X: X, — UX, 1 are weak equivalences.

11.9 Theorem. As long as C is a left proper and cellular model category, with a Quillen adjunction
(T, U) between C and itself the functor T extends to a Quillen equivalence T : SN(C, T) — SN(C, T)
using the stable model structure.

If C is a symmetric monoidal model category and T = K @ — for some cofibrant objct K, then
we have a similar result for the symmetric spectra.

Let G be a compact topological group, consider the category of all G-spaces. Weak equivalences
of G-spaces are f: X — Y such that for each closed subgroup H of G, f : XH — YH(induced map
on fixed points) is a weak homotopy equivalence. The G-spectrum is indexed over real representations
V, which is called the G-universe. A representation sphere SV is just a one-point compatification of
V, with g actfs on the infinity as fixed points.

11.10 Definition. A G-spectrum consists of the following data:
- A G-space X(V) for each representation V in the G-universe;

. Structure maps S~V A X(V) — X(W) where the wedge sum is equipped with the diagonal
action of G.

Morphsims between G-spectra are just G-maps between G-spaces, commuTing with the structure

maps. A morphism f: X — Y is a weak equivalence if 7H(f): 7H(X) = #H(Y) for all subgroup H
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of G, where il is given by

_u _ [ colimy[G/H, A SVeR! x(1)]°, q>0;
47| colimyor-a[G/H, A SR X(M)]°, q<o0/

Where [—, —]€ is the homotopy in the category of G-spaces.
This category has a model structure.

(11d) Compact Objects. We start with some definitions.

11.11 Definition. Let T be a triangulated category with all small coproducts. G = {X;|i € I} objects in
T. We say G is a set of generators for T if the only full triangulated subcategory of T containing G
is T itself.

11.12 Definition. Let T be the triangulated category as before. An object A € T is compact if the
functor T(A, —), commutes with arbitrary coproducts. Le. T(A,UX;) = UT(A, X;).

This relates to compactness in topological spaces, because for A compact, the functor [A, —]
commutes with arbitrary coproducts in the category of topological spaces.

1113 Lemma. The class of compact objects is closed under finite coproducts, suspension and desus-
pension.

11.14 Lemma. Let {X;} be a set of compact objects in T, then TFAE:
- G ={X;} generates T;

- A morphism f: A — B is an isomorphism if and only if T(X;, f): T(X;,A), —» T(X;,B), is an
isomorphism for all Xj;

- Z=0for Z € Tisequivalentto T(X;,Z) =0forall X; € G.

11.15 Proposition. Let X be a sequential spectrum, then for k € N, there exists natural isomorphisms
of abelian groups
T (X) 2 [E°SK,X] and  7_ (X) = [FYSC, X].

11.16 Corollary. [S,X], =0 if and only if X ~ .

So the stable homotopy category SHC is generated by the single sphere spectrum S.
Finally, we state a result claiming the rigidity of spectra:

11.17 Theorem (Schwede). Let C be a stable model category. If there's an equivalence of triangulated
categories ¢ : SHC — Ho(C), then C is Quillen equivalent to SN

Because of this theorem, we say SHc is rigid. All the model categories constructed are automatically
isomorphic using this equivalence.
The proof is reduced to

11.18 Theorem. F : SHC — SHC be an exact functor sending S to itself, then F is an equivalence of
categories.

The proof of this theorem just use the fact that F: [S,S],, = [S,S],, is an isomorphism for all n
and the lemma where for an exact functor F: T — T commuting with arbitrary colimits and {F(X;)}
generates T for {X;} compact generators of T, and F : T(X;, X;) = T(F(X;), F(X;)) for all i, j, then F
is an equivalence of categories.






TALK 12

Monoidal Structures

Haosen Wu

(12a) Monoidal Model Category.
12.1 Definition. A symmetric monoidal category is a category C with a functor

-®-:CxC->C
called monoidal product, a monoidal unit 1, and isomorphisms
. (Associativity) X ® V) ®Z > X ® (Y ® Z)
C(UniN1®X = X

- (Symmetry) X® Y = Y®X
satisfying the coherence diagrams given below:

(a) (fourfold associdativity is coherent)
(W®X)®Y)®Z —5 (WRX)®(Y®2) — = WX ® (Y ®2)

\La@id id ®aT

WRX®Y)®Z > WR(X®Y)®2)

(b) (symmetry is self-inverse) X®Y —> Y ®X —> X QY

~__ 4 T

X®Y)®Z — XQ (Y ®Z)

b k

(c) (symmetry and associdtivity are compatible) 7 & (X @ Y) (Y®Z)®X

\bd QT \L‘r@id

ZRY ®X) — (Z®Y)®X

X®DN®Y — X®(1®Y)
(d) (compatibility of unit, symmetry, and associativity) \L@id \td S
1)y 24y x®Y
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12.2 Example. In the category of sets Sets, the Cartesion product — X — gives the tensor product. For
the category of simplicial sets sSets, we define (A X B),, = A,, X B, where the face and degeneracy
maps are just product of the face and degeneracy maps of A and B.

12.3 Example. In the category of topological spaces Top, the Cartesian product — X — with Kelly
product topology gives us the monoidal structure on Top, with unit a one-point space. The monoidal
structure on Top, is given by the smash product — A —, with unit (S°,1).

We want closed symmetric monoidal categories, where closed means the monoidal product is
associated with a function object.

12.4 Definition. Let (C,®,1) be a symmetric monoidal category. Given maps f: A—->Band g: X —

Y in C, their pushout product is the natural map fog: B® X H AQY >BRY.
ARX

(a) Now let g: X — Y be a map in C and A is an object of C, then idy0g = idsgy : AQY - AQY

(b) For @ € Cwhere Cis a closed monoidal category, 3®X = @& for all X € C. This might not be true
if C is not closed. Letiy : @ — A be the unigue morphism, then we have iyog: AQX - AQY

12.5 Definition. For f: A—> Band g: X — Y, we have the termwise product f®g: AQX - BQY.

12.6 Definition. A monoidal category C is closed if there is a functor Hom : C°? x C — C and natural
isomorphisms ¢ : C(A® B,C) — C(A,Hom(B, C)). We call this functor internal Hom.

We call the quadruple (C, ®, 1, Hom) the closed symmetric monoidal category. Now let A, B, C € C,
then we have

C°P(Hom(A, B),C) = C(C,Hom(A,B)) =~ C(C ® A, B) = C(A,Hom(C, B)).
these isomorphisms imply that there is an adjunction
Hom(—,B): C < C°: Hom(—,B).
12.7 Example. The categories Sets, sSets and Top are closed monoidal categories.
(12b) Monoidal Structures on Model Categories. We want the tensor product structure so that
it can pass to the homotopy category of the given stable model category. We require the adjunction
AQ—: CsC: Hom(A4,-)

which is Quillen whenever A is cofibrant, and conversely, the pair of adjunction functors Hom(—, B), Hom(—, B),
should also be a Quillen adjunction.

12.8 Definition. The pushout product axiom is the following:

1) For some cofibrant replacement of 1 and any A € C, we have
w.e.
1°f @A — g@A=A.

2) For any cofibrations f,g, fog is a cofibration.
3) Given f,g € C, if f/g is weak equivalence, then fog is an acyclic cofibration.

12.9 Lemma. Let (C,®,1,Hom) be a symmetric monoidal category with a model structure satisfying
the pushout product axiom, then TFAE:

1) Letf: A-> Bandg: X —» Y. If f or g is an acyclic cofibration, then fog is an acyclic cofibration.
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2) Let f: A—> Band h: P — Q and consider the map
Hom(f, h) : Hom(B, P) — Hom(B, Q) Xiom(a,q) Hom(A, P),
then if f or g is acyclic cofibration, then Homy(f, h) is acyclic cofibration.

12.10 Definition. (C,®,1,Hom) with a given model structure is a closed symmetric monoidal model
category if it further satisfies the pushout product axiom.

12.11 Lemma. Given a closed symmetric monoidal model caftegory C, A cofibration and B fibration,
then the ®-Hom adjunction is Quillen.

12.12 Theorem. Let (C,®,1,Hom) be the closed symmetric monoidal model category, then the ho-
motopy category (Ho(C), ®", 1, RHom) is a closed symmetric monoidal category.

Sketch of Proof Given A and Y, we have functors A @ — and — ® B, which are right exact, and hence
we can pass o the homotopy category to get the corresponding derived functors. O

12.13 Example. sSet, Top and Ch(R) with projective model structure are closed symmetric monoidal
model categories.

12.14 Theorem. Let C be the closed symmetric monoidal model category, then Ho(C) is triangulated
satisfying the following properties:

- There is a map ex y : (£X) QLY = X QL Y),
. — QL A is exact:
- RHom(A, —) is exact;

- RHom(—,A) sends exact triangle X — Y — Z — X][1] fo the exact triangle Hom(Z,A) —
Hom(Y,A) - Hom(X,A) - Hom(Z,A)[-1].

- Let a,b € Z and (-1) be the additive inverse of id[; 1), then we have the commutative diagram

¥01 @L b1 —=3 zath)

L e

¥h1 @t 3241 —=3 xbtay;

- The fourfold associativity diagram descends to the homotopy category Ho(C).

« The diagram
X1 — X

oo 27
€x,1

X Q1)

is commutative.
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(12¢) The Smash Product. Note that we have the functor % : Ho(Top,) — SHC. If we endow
SHC with a monoidal structure, then we should expect Z* to be symmetric monoidal, i.e. Z*(AAB) =
T®A AL Z®B, and Z®S° = S. Naively, we can define

X, ANY,, k = 2n;

(X Anaive Y)ic = Xy AYy, k=2n+1

nAYn
with structure maps Z(X, A Y,) = X)) A Y, SLALN Xpa AY,and ZXp AY,) = STAX, 0 A

Ts1,x,,,,Aid id ATy , ) , .
Y, ———— X, .1 AS' A Y, —— X, ;1 A Y,,41. This actually gives us the “fensor product” on SHC,

but it's not associative, so we must take all the choices, which means that we need to think about ends
and coends.
We define
X®Y)n= \/ XaAYs,

a+b=n
with unit the spectrum with S° in degree 1 and 0 elsewhere. S acts on the sequential spectrum X by
setting

uxa(S®X)n=\/ S*AXp — X,
a+b=n

and let X ®@s Y :=coeg X ®S®Y = X ®Y). This would be the actual product we're gonna use,
but this is not symmetric. But this lack of symmetry would be resolved by the internal symmetry of
orthogonal and symmetric spectra. The solution in the sequential spectra would be the enrichment
of ends and coends. The formula is

b,ceN
(F®G)a=f Nb+c,a) AFp AG, = \/ Fp A Ge.

b+c=a



TALK 13

Monoidal Structures, Continued

Haosen Wu

Today we'll contfinue the discussion of monoidal structures. Recall that last time we define the
monoidal product fo be (X ® Y),, = \/ X, A Yy, and today we'll construct this monoidal product
a+b=n

explicitly.

(13a) Closed Monoidal Structure on Spectra. Let's define three enriched categories first.

13.1 Definition. The objects of these three Top,-enriched categories are all natural numbers N =
{0,1,2,---} and the morphism spaces are given separately as:

. . SO, if a = b;

(a) N has morphism space given by N(a,b) = { . fa#b.
_ (Za)+’ if a =b;
(b) (a,b) —{ +,  ifa#b.
| O(a)y, ifa=b;
(¢) O(a,b) —{ %, if a # b.

There are functors between these categories N - X — O sending n to n, and the induced maps
oh morphisms are identity if a # b and inclusion maps * — X, — O(a) if a = b.

Now we need more definitions to define embedded functors or natural transformations. Let E be
a Top,-enriched category, then a functor F: E — Top, is a collection of maps F(a,b): E(a,b) —
Top, (F(a), F(b)) which are required to be associative and satisfy the coherence condition we defined
last time. We can write F(a,b) : E(a,b) A E, — F} as the adjoint of the original map. Now we can
think that E(a, b) acts on F.

13.2 Definition. A sequential space is a functor F: N — Top,, and similarly for symmetric spaces
and orthogonal spaces.

Applying our previous observation, we get that there are actions of X, acting on a symmetric
space X, and O(a) on an orthogonal space Y.

13.3 Theorem. N, Z, O have symmetric monoidal products denoted by +.

Objectwise, we send (a, b) to a + b, and on morphisms, N(a, b) A N(c,d) - N(a + ¢, b + d), which
are either % — % or S°AS? — S°: for (a, b) AZ(c,d) = Z(a+b,c+d), this is nontrivial only if a = b,
¢ = d and the inducing map is the natural map £, XX — X, for O(a,b)AO(c,d) — O(a+c,b+d),
this map is non-trivial only when a = ¢, b = d and the map is the inclusion O(a) X O(c¢) — O(a + ¢),
sending the pair of matrices to the diagonal matrix.
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Now we want to construct our tensor ®. To do this we need the concept of end and coend. We
start with end.

13.4 Definition. The end of a (bi)functor C°? x C — D, if C is small and D complete, is the equalizer

fF(c,c) i HF(C,C) =3 H F(c,c"),

ceC c—c!

and the coend of a bifunctor F is the coequalizer

f F(c,c) i HF(C,C) b H F(c,c).

ceC c—c!

13.5 Example. Let A be a natural transform and f,g: C — X any two (bi)functors, then
Homx(F(=), G(—)) : C°P x C — Set, and we have the commutative diagram

Nat(F, G) ————> Hom(F(c), G(¢c))

1 )

Hom(F(c'), G(c')) ——= Hom(F(c), G(c))

so Nat(F, G) is the end of the functor Homx(F(—), G(-)).

13.6 Definition (Extranatural Transformation). Let F: AXB? xB - D and G: AX C°°? x C - D be
two functors. A family n(a, b,c) : F(a,b,b) - G(a,c,c) natural in a is said fo be extranatural in b, c if
the following holds:

1) n(—,b,c) is natural;
2) forany g: b — b’ and Va € A, ¢ € C, the following diagram

F(1,1,g)

Fa,b',b) —5 % F(a,b',b')

im,g,n \Ln(a,b’,C)

n(a,b,c)

F(a’ b, b) % G(a, (68 C)
commutes.

13.7 Definition. The end of F: C x C°’? — D is a universal extranatural transformation from object
e of D fo F. More precisely, it's a pair (e,w) where e € ObD and w: e — S is an exfranatural
transformation such that for all extranatural transformation 8 : x — S, there exists a unique morphism
h: x — e in D such that 8, = w, o h for any object a € C.

13.8 Example. Consider the geometric realization functor | —| = I|_r)n o". We also have the singular
AntC

set functor S: Top — Set®™. LetY bea space, then S(Y): A°P — Set with value at [n] given by

S(Y)[n] = homy,,(c",Y). The geometric realization functor is the left adjoint to S. Recall for any

simplicial set X, the set of natural transformations X — S(Y') should be in bjjection to the continuous

maps |X| — Y. Thisis realized as follows: we deform X([n]) — hom,,(c",Y) w ¢, : X([n])xc" - Y

X([fDxid
_—

such that for any given morphism f: [m] — [n], (X([n]) X g™ X([m]) X gy, ﬂ Y) =

d f n
(X([n]) X o™ =, X([n]) x o" ¢—> Y), So we got the extranatural transformation X([n]) X o —

n
|X|. Therefore the coend is exactly |X| = f X([n]) x o™
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13.9 Definition. Let M. C°? x C — D where C, D are all V-enriched categories, with C small and D
complete, then the enriched coend

int°€“M(c, ¢) = coeq (]_[ M(a,b) ® C(b,a) 3 | [ M, c)) :
ceC

and the enriched end is given as

f M(c,c) =eq (H M(c,c) = H hom(C(a, b), M(a, b))).
ceC ceC a,beC

13.10 Lemma (Yoneda Lemma). Let C, D be V-enriched, and F : C — D any V-enriched functor and

any ¢ € C, we have
Nat(C(c, —), F) = F(c).

Weritten in ferms of enriched ends, this is F(c) 5 fhom(C(c, d), F(d)).
d

We can also describe the Kan extension:

13.11 Lemma (Kan Extension). Let C, D, E be enriched, and F: C = D, G: D — E be functors, then
the left Kan extension is given by

(LangF), = f E(G(c),e) ® F(c).

Now let's return fo sequential, symmetric and orthogonal spaces.

13.12 Definition. Let E be some Top,-enriched symmetric monoidal category, then we define the
convolution product F@® G of F and G from E — Top, fo be the leftf Kan extension of Ao (F,G) along
+. In diagrams, we have

F,G
EXE (4 Top, X Top, % Top,

L e

: - —
and we require the universal property

ETop,(F® G,H) = (ExE)Top,(Ao (F,G),Ho+).

In terms of ends, if's given by fTop*((F ® G);H,) = f Top,(Fp A Ge, Hp i c).

a b,c

b,c
By Kan extension, (F ® G), = j E(b+c,a) AFp AG..
13.13 Lemma. The categories N Top,, X Top, and O Top, are closed monoidal categories with
b,c
(F® G), =/ NGb+c,a) AFyAG = \/ FyAG..
b+c=a
13.14 Definition. The sphere spectrum in N, Z, O is given by:
NTop, n~ S

ZTop, Z, X S".
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13.15 Lemma. In ZTop, and O Top,, the sphere spectrum is commutative with respect to &.

Proof (S® S)y = \/ Eads Azyxs, SP A ST = \/(Ea)s Agyxz, S*¢ = S% and similarly for
b+c=a b+c
O Top,. H
This fails for N Top,.

13.16 Theorem. The category of S-module is a category of spectra. The category of S-module in
N Top, is equivalent to the category of sequential spectra, and similarly for X Top, and for O Top,.

Finally, we can define the smash product XAY =X ®sY =coeq X ®SQ®Y 23 X®Y), and the
tensor product X ® Y is what we have defined before using end.

13.17 Corollary. S* has a stable monoidal smash product A: for X and Y in S¥, X AY = X Qs Y.

b,c
13.18 Theorem (A on S* SO). () (XAY), = f Ts(b+c,a) AXy AX,;

0) XAY),= S 0s(b+c,a) AXy AX,,
here =g, Og should be thought of as follows: g Top, = S*, and Og Top,, = SO°.
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Left Bousfield Localization

Qiyu Zhang

The goal of localization is to add weak equivalences. The most common setting is the localized
spectra with respect to some homology theory E,..

Given any E € SHC or S, we define E,(X) = m,(E A X) to be the homology theory of X. Weak
equivalences are m,-isomorphisms, but after localization, the weak equivalences would then be E, -
isomorphisms.

14.1 Definition. Given a model category C, we construct the mapping space Map.(—,—) to be a
simplicial set. Let W be a class of maps in C, then Z € C is W-local if Map.(f,Z): Map.(B,Z) —
Map(A, Z) is a weak equivalence of simplicial sets for all f: A — B in W.

A morphism g: X — Y is a W-equivalence if Map(g,Z) : Map(Y,Z) = Map(X,Z) is a weak
equivalence of simplicial sets for all W-local objects Z € C.

An object X € C is W-acyclic if Map(X, Z) =~ * for all W-local objects Z.

From this definition, we know that W is a subclass of the class of all W-equivalences.

142 Lemma. (1) Every element of W and every weak equivalences in C are W-equivalences.
(2) If Z - Z' is a weak equivalence in C, then Z is W-local iff Z’ is W-local.

(3) A W-equivalence f: X — Y between W-local objects is a weak equivalence in C.

So only the equivalence classes of W in Ho(C) matters. This implies that if f ~ g, then
Map.(f,Z) ~ Map.(g, C) as simplicial sefs. Hence we can replace W by a class of weakly equivalent
maps.

Now we can go to the definition of left Bousfield localization. The idea is to construct a model
structure that “focus on” W-local objects and W-equivalences with suitable universal properties. This
structure specifies the category Ly C, cofibrations cof(LyyC), weak equivalences W(Ly,C), and if's
unique as a model category.

14.3 Definition. Let C be a model category and W be a class of maps. The left Bousfield localization of
C is a model structure Ly, C on the same category C with weak equivalences given by W-equivalences
and cofibrations given by cofibrations of C.

14.4 Definition. Let C be a model caftegory and W a class of maps, f: X — Y is a W-localization if
(1) f is a W-equivalence;
(2) Y is a W-local object.

It would look like this:

67
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X —3Z

e
7

Y

where Z is W-local. We then call Y is “the” W-localization of X, and denoted by Y = LyyX.

There're some existence results. Let C be a left proper and cellular model category, W the set
of morphisms in C, then there exists a left Bousfield localization LyyC which is also left proper and
cellular. The fibrant objects in Ly, C are just W-local objects.

Recall that if C is a model category, X € C, then a fibrant replacement of X, called Y, is a fibrant

object Y with a weak equivalence X 5y,

14.5 Corollary. The fibrant replacement of X in Ly(C) is Y which is also fibrant in C, W-local, and
X = Y. This means Y = Ly X.

14.6 Corollary. id: C & LyC: id is a Quillen adjunction.

This then induces an adjunction Lid: Ho(C) & Ho(Lyw(C)): Rid of derived categories, which
give isomorphisms
[X,LywY]¢ = [X, Y]EwC,

14.7 Remark. We have the ‘“localization functor”
Lid=L: Ho(C) = Ho(LyC),

which takes [W] info isomorphisms satisfying the following universal property: let D be another
model category, F: C — D a left Quillen functor such that LF . Ho(C) — Ho(D) sends [W] fo
isomorphisms, then F passes to a left Quillen functor F' . LywC — D such that the diagram

%

Ly C

14.8 Remark. We consider the class of E,-isomorphisms. This does not form a set, but it's possible to
find a set Jg such that E,.-isomorphisms are just Jg-equivalences, hence we can apply the previous
theorem fo get a model category whose weak equivalences are E,-isomorphisms.

14.9 Example. SN, S%, SO are left Bousfield localizations of the levelwise model structures at the class
of stable equivalences. (Note that 7.-isomorphisms are E,-isomorphisms where the spectra is S.)

To use that theorem to construct “stable model structure”, we need a set of stable equivalences W
such that W-equivalences are all the class of stable equivalences. Set

W ={a,: EN,;S' - ENSIr e N}

then W would satisfy our required property.
14.10 Corollary. X is W-local if and only if the map X = SN(ENS?, X) — SN(EN;SY, X) = QX4 is @
weak equivalence of fopological spaces for all n € N.

This tells us that W-local spectra are precisely the Q-spectraq, i.e. the fibrant objects of the stable
model structure.

1411 Lemma. Map-(2X,Y) = Map(X, QY) = QMap (X, Y).

14.12 Lemma. Let C be a model category, W a class of maps in C, then the class of W-local objects
is closed under Q, and the class of W-equivalences is closed under Z.
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Proof There are natural isomorphisms in Ho(sSet),:
QMap(X,Z) = Map(X, QZ) = Map(2X, Z)

Thus if Map(f,Z): Map(B,Z) - Map.(4, Z) is a weak equivalence for all f: A — B in W, then
Map.(f,QZ) is also a weak equivalence. The proof for suspension is similar. O

14.13 Definition. Let C be a model category and W a class of morphisms. Then W is stable if one of
the following mutually equivalent conditions hold:

(1) The class of W-local objects is closed under X:
(2) The class of W-equivalences is closed under Q.

Then stability of C and (%, Q)-adjunction gives weak equivalences
Map(QX,Y) =~ Map-(QX, QYY) ~ Map(ZQX, XY) ~ Map (X, XY).

When W is closed under Q(up to weak equivalence), Y € C is W-local if and only if Y is, in which
case W is stable.

14.14 Theorem. Let C be a proper, acceptable stable model category, and let W be a stable set of
maps in C. Then the left Bousfield localization Ly, C of C at W exists and is a proper and acceptable
stable model category. The generating cofibrations are given by generating cofibrations of C, and
acyclic cofibrations given by I U AW.

14.15 Definition. Let W be a set of cofibrations between cofibrant objects in a cofibrantly generated
model category C, then we define a sef of horns on W,

AW = {fOi,|f e W, n e N}

where i, : dA[n], — A[n], is the standard inclusion map.
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